{"title":"急性肝衰竭中的肝辅助装置:目前的使用和未来的方向。","authors":"Victor Dong, Constantine J Karvellas","doi":"10.1016/j.bpg.2024.101964","DOIUrl":null,"url":null,"abstract":"<p><p>Acute liver failure (ALF) is a rare syndrome where rapid deterioration of liver function occurs after an acute insult in a patient without prior chronic liver disease and leads to jaundice, hepatic encephalopathy (HE), and oftentimes multiorgan failure (MOF). At this time, the only definitive treatment for ALF is LT but some patients, particularly APAP-induced ALF patients, may have ongoing regenerative capacity of the liver and may not require LT with ongoing supportive management. As a result, extracorporeal liver support (ECLS) has been a topic of interest both as a bridge to LT and as a bridge to spontaneous recovery and aims to remove damaging toxins that further aggravate liver failure, stimulate regeneration of the liver, and improve pathophysiologic consequences of liver failure. There are currently two categories of ECLS (artificial and bioartificial). Artificial ECLS does not incorporate active hepatocytes and are based on the principles of filtration and adsorption and includes renal replacement therapy (RRT), plasma adsorption including plasma exchange and Prometheus (Fractionated Plasma Separation and Adsorption), and albumin dialysis including MARS (Molecular Adsorbent Recirculating System) and SPAD (Single Pass Albumin Dialysis). Bioartificial ECLS incorporates active hepatocytes (human or porcine in origin) to improve liver detoxification capacity and to support hepatic synthetic function and includes ELAD (Extracorporeal Liver Assist Device) and HepatAssist.</p>","PeriodicalId":101302,"journal":{"name":"Best practice & research. Clinical gastroenterology","volume":"73 ","pages":"101964"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liver assistive devices in acute liver failure: Current use and future directions.\",\"authors\":\"Victor Dong, Constantine J Karvellas\",\"doi\":\"10.1016/j.bpg.2024.101964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute liver failure (ALF) is a rare syndrome where rapid deterioration of liver function occurs after an acute insult in a patient without prior chronic liver disease and leads to jaundice, hepatic encephalopathy (HE), and oftentimes multiorgan failure (MOF). At this time, the only definitive treatment for ALF is LT but some patients, particularly APAP-induced ALF patients, may have ongoing regenerative capacity of the liver and may not require LT with ongoing supportive management. As a result, extracorporeal liver support (ECLS) has been a topic of interest both as a bridge to LT and as a bridge to spontaneous recovery and aims to remove damaging toxins that further aggravate liver failure, stimulate regeneration of the liver, and improve pathophysiologic consequences of liver failure. There are currently two categories of ECLS (artificial and bioartificial). Artificial ECLS does not incorporate active hepatocytes and are based on the principles of filtration and adsorption and includes renal replacement therapy (RRT), plasma adsorption including plasma exchange and Prometheus (Fractionated Plasma Separation and Adsorption), and albumin dialysis including MARS (Molecular Adsorbent Recirculating System) and SPAD (Single Pass Albumin Dialysis). Bioartificial ECLS incorporates active hepatocytes (human or porcine in origin) to improve liver detoxification capacity and to support hepatic synthetic function and includes ELAD (Extracorporeal Liver Assist Device) and HepatAssist.</p>\",\"PeriodicalId\":101302,\"journal\":{\"name\":\"Best practice & research. Clinical gastroenterology\",\"volume\":\"73 \",\"pages\":\"101964\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Best practice & research. Clinical gastroenterology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpg.2024.101964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Best practice & research. Clinical gastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpg.2024.101964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Liver assistive devices in acute liver failure: Current use and future directions.
Acute liver failure (ALF) is a rare syndrome where rapid deterioration of liver function occurs after an acute insult in a patient without prior chronic liver disease and leads to jaundice, hepatic encephalopathy (HE), and oftentimes multiorgan failure (MOF). At this time, the only definitive treatment for ALF is LT but some patients, particularly APAP-induced ALF patients, may have ongoing regenerative capacity of the liver and may not require LT with ongoing supportive management. As a result, extracorporeal liver support (ECLS) has been a topic of interest both as a bridge to LT and as a bridge to spontaneous recovery and aims to remove damaging toxins that further aggravate liver failure, stimulate regeneration of the liver, and improve pathophysiologic consequences of liver failure. There are currently two categories of ECLS (artificial and bioartificial). Artificial ECLS does not incorporate active hepatocytes and are based on the principles of filtration and adsorption and includes renal replacement therapy (RRT), plasma adsorption including plasma exchange and Prometheus (Fractionated Plasma Separation and Adsorption), and albumin dialysis including MARS (Molecular Adsorbent Recirculating System) and SPAD (Single Pass Albumin Dialysis). Bioartificial ECLS incorporates active hepatocytes (human or porcine in origin) to improve liver detoxification capacity and to support hepatic synthetic function and includes ELAD (Extracorporeal Liver Assist Device) and HepatAssist.