Bo Guo , Zhihai Huang , Haitao Luo , Perpetual Hope Akwensi , Ruisheng Wang , Bo Huang , Tsz Nam Chan
{"title":"基于变压器编码器和聚合解码器的隧道衬砌缺陷提取网络","authors":"Bo Guo , Zhihai Huang , Haitao Luo , Perpetual Hope Akwensi , Ruisheng Wang , Bo Huang , Tsz Nam Chan","doi":"10.1016/j.jag.2024.104259","DOIUrl":null,"url":null,"abstract":"<div><div>The tunnel environment is characterized by insufficient ambient light, obstructed view, and complex inner lining construction conditions. These factors frequently result in limited anti-interference capability, reduced recognition accuracy, and suboptimal segmentation results for defect extraction. We propose a deep network model utilizing an encoder–decoder framework that integrates Transformer and convolution for comprehensive defect extraction. The proposed model utilizes an encoder that integrates a hierarchical Transformer backbone with an efficient attention mechanism to fully explore complete information at multi-scale granularities. In the decoder, multi-scale information is initially aggregated using a Multi-Layer Perceptron (MLP) module. Additionally, the Stacking Filters with Atrous Convolutions (SFAC) module are implemented to enhance the perception of the complete defect scope. Furthermore, a Boundary-aware Attention Module (BAM) is implemented to enhance edge information to improve the detection of defects. With this well-designed decoder, the multi-scale information from the encoder can be fully aggregated and exploited for complete defect detection. Experimental findings illustrate the effectiveness of our proposed approach in addressing tunnel lining defects within the image dataset. The outcomes reveal that our proposed network achieves an accuracy (Acc) of 94.4% and a mean intersection over union (mIoU) of 78.14%. Compared to state-of-the-art segmentation networks, our model improves the accuracy of tunnel lining defect extraction, showcasing enhanced extraction effectiveness and anti-interference capability, thus meeting the engineering requirements for defect detection in complex environments of tunnels.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104259"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced network for extracting tunnel lining defects using transformer encoder and aggregate decoder\",\"authors\":\"Bo Guo , Zhihai Huang , Haitao Luo , Perpetual Hope Akwensi , Ruisheng Wang , Bo Huang , Tsz Nam Chan\",\"doi\":\"10.1016/j.jag.2024.104259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tunnel environment is characterized by insufficient ambient light, obstructed view, and complex inner lining construction conditions. These factors frequently result in limited anti-interference capability, reduced recognition accuracy, and suboptimal segmentation results for defect extraction. We propose a deep network model utilizing an encoder–decoder framework that integrates Transformer and convolution for comprehensive defect extraction. The proposed model utilizes an encoder that integrates a hierarchical Transformer backbone with an efficient attention mechanism to fully explore complete information at multi-scale granularities. In the decoder, multi-scale information is initially aggregated using a Multi-Layer Perceptron (MLP) module. Additionally, the Stacking Filters with Atrous Convolutions (SFAC) module are implemented to enhance the perception of the complete defect scope. Furthermore, a Boundary-aware Attention Module (BAM) is implemented to enhance edge information to improve the detection of defects. With this well-designed decoder, the multi-scale information from the encoder can be fully aggregated and exploited for complete defect detection. Experimental findings illustrate the effectiveness of our proposed approach in addressing tunnel lining defects within the image dataset. The outcomes reveal that our proposed network achieves an accuracy (Acc) of 94.4% and a mean intersection over union (mIoU) of 78.14%. Compared to state-of-the-art segmentation networks, our model improves the accuracy of tunnel lining defect extraction, showcasing enhanced extraction effectiveness and anti-interference capability, thus meeting the engineering requirements for defect detection in complex environments of tunnels.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"136 \",\"pages\":\"Article 104259\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224006150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224006150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
An enhanced network for extracting tunnel lining defects using transformer encoder and aggregate decoder
The tunnel environment is characterized by insufficient ambient light, obstructed view, and complex inner lining construction conditions. These factors frequently result in limited anti-interference capability, reduced recognition accuracy, and suboptimal segmentation results for defect extraction. We propose a deep network model utilizing an encoder–decoder framework that integrates Transformer and convolution for comprehensive defect extraction. The proposed model utilizes an encoder that integrates a hierarchical Transformer backbone with an efficient attention mechanism to fully explore complete information at multi-scale granularities. In the decoder, multi-scale information is initially aggregated using a Multi-Layer Perceptron (MLP) module. Additionally, the Stacking Filters with Atrous Convolutions (SFAC) module are implemented to enhance the perception of the complete defect scope. Furthermore, a Boundary-aware Attention Module (BAM) is implemented to enhance edge information to improve the detection of defects. With this well-designed decoder, the multi-scale information from the encoder can be fully aggregated and exploited for complete defect detection. Experimental findings illustrate the effectiveness of our proposed approach in addressing tunnel lining defects within the image dataset. The outcomes reveal that our proposed network achieves an accuracy (Acc) of 94.4% and a mean intersection over union (mIoU) of 78.14%. Compared to state-of-the-art segmentation networks, our model improves the accuracy of tunnel lining defect extraction, showcasing enhanced extraction effectiveness and anti-interference capability, thus meeting the engineering requirements for defect detection in complex environments of tunnels.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.