脂化耶氏菌自发和诱导的基因组改变模式。

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2025-01-31 Epub Date: 2024-12-23 DOI:10.1128/aem.01678-24
Yuan-Ru Xiong, Yuan-Chun Fang, Min He, Ke-Jing Li, Lei Qi, Yang Sui, Ke Zhang, Xue-Chang Wu, Liang Meng, Ou Li, Dao-Qiong Zheng
{"title":"脂化耶氏菌自发和诱导的基因组改变模式。","authors":"Yuan-Ru Xiong, Yuan-Chun Fang, Min He, Ke-Jing Li, Lei Qi, Yang Sui, Ke Zhang, Xue-Chang Wu, Liang Meng, Ou Li, Dao-Qiong Zheng","doi":"10.1128/aem.01678-24","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the genomic alterations in <i>Yarrowia lipolytica</i>, a key yeast in industrial biotechnology, under both spontaneous and mutagen-induced conditions. Our findings reveal that spontaneous mutations occur at a rate of approximately 4 × 10<sup>-10</sup> events per base pair per cell division, primarily manifesting as single-nucleotide variations (SNVs) and small insertions and deletions (InDels). Notably, C-to-T/G-to-A transitions and C-to-A/G-to-T transversions dominate the spontaneous SNVs, while 1 bp deletions, likely resulting from template slippage, are the most frequent InDels. Furthermore, chromosomal aneuploidy and rearrangements occur, albeit at a lower frequency. Exposure to ultraviolet (UV) light, methylmethane sulfonate (MMS), and Zeocin significantly enhances the rates of SNVs and alters their mutational spectra in distinct patterns. Notably, Zeocin-induced SNVs are predominantly T-to-A and T-to-G substitutions, often occurring within the 5'-TGT<sup>*</sup>-3' motif (<sup>*</sup> denotes the mutated base). Additionally, Zeocin exhibits a higher potency in stimulating InDels compared to UV and MMS. Translesion DNA synthesis is implicated as the primary mechanism behind most Zeocin-induced SNVs and some InDels, whereas non-homologous end joining serves as the main pathway for Zeocin-mediated InDels. Intriguingly, the study identifies the gene <i>YALI1_E21053g</i>, encoding a protein kinase, as negatively associated with Zeocin resistance. Overall, our results not only deepened our knowledge about the genome evolution in <i>Y. lipolytica</i> but also provided reference to develop innovative strategies to harness its genetic potential.IMPORTANCE<i>Yarrowia lipolytica</i> exhibits high environmental stress tolerance and lipid metabolism capabilities, making it a microorganism with significant industrial application potential. In this study, we investigated the genomic variation and evolutionary patterns of this yeast under both spontaneous and induced mutation conditions. Our results reveal distinctive mutation spectra induced by different mutagenic conditions and elucidate the underlying genetic mechanisms. We further highlight the roles of non-homologous end joining and translesion synthesis pathways in Zeocin-induced mutations, demonstrating that such treatments can rapidly confer drug resistance to the cells. Overall, our research enhances the understanding of how yeast genomes evolve under various conditions and provides guidance for developing more effective mutagenesis and breeding techniques.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0167824"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784153/pdf/","citationCount":"0","resultStr":"{\"title\":\"Patterns of spontaneous and induced genomic alterations in <i>Yarrowia lipolytica</i>.\",\"authors\":\"Yuan-Ru Xiong, Yuan-Chun Fang, Min He, Ke-Jing Li, Lei Qi, Yang Sui, Ke Zhang, Xue-Chang Wu, Liang Meng, Ou Li, Dao-Qiong Zheng\",\"doi\":\"10.1128/aem.01678-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explored the genomic alterations in <i>Yarrowia lipolytica</i>, a key yeast in industrial biotechnology, under both spontaneous and mutagen-induced conditions. Our findings reveal that spontaneous mutations occur at a rate of approximately 4 × 10<sup>-10</sup> events per base pair per cell division, primarily manifesting as single-nucleotide variations (SNVs) and small insertions and deletions (InDels). Notably, C-to-T/G-to-A transitions and C-to-A/G-to-T transversions dominate the spontaneous SNVs, while 1 bp deletions, likely resulting from template slippage, are the most frequent InDels. Furthermore, chromosomal aneuploidy and rearrangements occur, albeit at a lower frequency. Exposure to ultraviolet (UV) light, methylmethane sulfonate (MMS), and Zeocin significantly enhances the rates of SNVs and alters their mutational spectra in distinct patterns. Notably, Zeocin-induced SNVs are predominantly T-to-A and T-to-G substitutions, often occurring within the 5'-TGT<sup>*</sup>-3' motif (<sup>*</sup> denotes the mutated base). Additionally, Zeocin exhibits a higher potency in stimulating InDels compared to UV and MMS. Translesion DNA synthesis is implicated as the primary mechanism behind most Zeocin-induced SNVs and some InDels, whereas non-homologous end joining serves as the main pathway for Zeocin-mediated InDels. Intriguingly, the study identifies the gene <i>YALI1_E21053g</i>, encoding a protein kinase, as negatively associated with Zeocin resistance. Overall, our results not only deepened our knowledge about the genome evolution in <i>Y. lipolytica</i> but also provided reference to develop innovative strategies to harness its genetic potential.IMPORTANCE<i>Yarrowia lipolytica</i> exhibits high environmental stress tolerance and lipid metabolism capabilities, making it a microorganism with significant industrial application potential. In this study, we investigated the genomic variation and evolutionary patterns of this yeast under both spontaneous and induced mutation conditions. Our results reveal distinctive mutation spectra induced by different mutagenic conditions and elucidate the underlying genetic mechanisms. We further highlight the roles of non-homologous end joining and translesion synthesis pathways in Zeocin-induced mutations, demonstrating that such treatments can rapidly confer drug resistance to the cells. Overall, our research enhances the understanding of how yeast genomes evolve under various conditions and provides guidance for developing more effective mutagenesis and breeding techniques.</p>\",\"PeriodicalId\":8002,\"journal\":{\"name\":\"Applied and Environmental Microbiology\",\"volume\":\" \",\"pages\":\"e0167824\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784153/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Environmental Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/aem.01678-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01678-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了工业生物技术中的关键酵母——多脂耶氏酵母在自然和诱变诱导条件下的基因组变化。我们的研究结果表明,每次细胞分裂每个碱基对大约发生4 × 10-10次自发突变,主要表现为单核苷酸变异(snv)和小插入和缺失(InDels)。值得注意的是,C-to-T/G-to-A转换和C-to-A/G-to-T转换主导了自发snv,而可能由模板滑移引起的1 bp缺失是最常见的indel。此外,染色体非整倍体和重排发生,尽管频率较低。紫外线(UV)、甲基甲烷磺酸盐(MMS)和Zeocin可显著提高snv的发生率,并以不同的模式改变其突变谱。值得注意的是,zeocin诱导的snv主要是T-to-A和T-to-G取代,通常发生在5‘-TGT*-3’基序内(*表示突变碱基)。此外,与UV和MMS相比,Zeocin在刺激InDels方面表现出更高的效力。翻译DNA合成是大多数zeocin诱导的snv和一些InDels的主要机制,而非同源末端连接是zeocin介导的InDels的主要途径。有趣的是,该研究发现编码一种蛋白激酶的基因YALI1_E21053g与Zeocin耐药性负相关。总的来说,我们的研究结果不仅加深了我们对脂肪瘤基因组进化的认识,而且为开发利用其遗传潜力的创新策略提供了参考。多脂罗氏菌具有较高的环境耐受性和脂质代谢能力,是一种具有重要工业应用潜力的微生物。在这项研究中,我们研究了这种酵母在自发和诱导突变条件下的基因组变异和进化模式。我们的研究结果揭示了不同诱变条件诱导的不同突变谱,并阐明了潜在的遗传机制。我们进一步强调了非同源末端连接和翻译合成途径在zeocin诱导突变中的作用,表明这种处理可以迅速赋予细胞耐药性。总的来说,我们的研究增强了对酵母基因组在各种条件下如何进化的理解,并为开发更有效的诱变和育种技术提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Patterns of spontaneous and induced genomic alterations in Yarrowia lipolytica.

This study explored the genomic alterations in Yarrowia lipolytica, a key yeast in industrial biotechnology, under both spontaneous and mutagen-induced conditions. Our findings reveal that spontaneous mutations occur at a rate of approximately 4 × 10-10 events per base pair per cell division, primarily manifesting as single-nucleotide variations (SNVs) and small insertions and deletions (InDels). Notably, C-to-T/G-to-A transitions and C-to-A/G-to-T transversions dominate the spontaneous SNVs, while 1 bp deletions, likely resulting from template slippage, are the most frequent InDels. Furthermore, chromosomal aneuploidy and rearrangements occur, albeit at a lower frequency. Exposure to ultraviolet (UV) light, methylmethane sulfonate (MMS), and Zeocin significantly enhances the rates of SNVs and alters their mutational spectra in distinct patterns. Notably, Zeocin-induced SNVs are predominantly T-to-A and T-to-G substitutions, often occurring within the 5'-TGT*-3' motif (* denotes the mutated base). Additionally, Zeocin exhibits a higher potency in stimulating InDels compared to UV and MMS. Translesion DNA synthesis is implicated as the primary mechanism behind most Zeocin-induced SNVs and some InDels, whereas non-homologous end joining serves as the main pathway for Zeocin-mediated InDels. Intriguingly, the study identifies the gene YALI1_E21053g, encoding a protein kinase, as negatively associated with Zeocin resistance. Overall, our results not only deepened our knowledge about the genome evolution in Y. lipolytica but also provided reference to develop innovative strategies to harness its genetic potential.IMPORTANCEYarrowia lipolytica exhibits high environmental stress tolerance and lipid metabolism capabilities, making it a microorganism with significant industrial application potential. In this study, we investigated the genomic variation and evolutionary patterns of this yeast under both spontaneous and induced mutation conditions. Our results reveal distinctive mutation spectra induced by different mutagenic conditions and elucidate the underlying genetic mechanisms. We further highlight the roles of non-homologous end joining and translesion synthesis pathways in Zeocin-induced mutations, demonstrating that such treatments can rapidly confer drug resistance to the cells. Overall, our research enhances the understanding of how yeast genomes evolve under various conditions and provides guidance for developing more effective mutagenesis and breeding techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Inactivation of deposited bioaerosols on food contact surfaces with UV-C light emitting diode devices. Variability in cadmium tolerance of closely related Listeria monocytogenes isolates originating from dairy processing environments. Postdocs should receive relocation benefits from the universities that hire them. Systematic analysis of the glucose-PTS in Streptococcus sanguinis highlighted its importance in central metabolism and bacterial fitness. Papain expression in the Escherichia coli cytoplasm by T7-promoter engineering and co-expression with human protein disulfide isomerase (PDI) and thiol peroxidase (GPx7) genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1