使能电场模型的微观逼真的大脑。

IF 7.6 1区 医学 Q1 CLINICAL NEUROLOGY Brain Stimulation Pub Date : 2025-01-01 DOI:10.1016/j.brs.2024.12.1192
Zhen Qi , Gregory M. Noetscher , Alton Miles , Konstantin Weise , Thomas R. Knösche , Cameron R. Cadman , Alina R. Potashinsky , Kelu Liu , William A. Wartman , Guillermo Nunez Ponasso , Marom Bikson , Hanbing Lu , Zhi-De Deng , Aapo R. Nummenmaa , Sergey N. Makaroff
{"title":"使能电场模型的微观逼真的大脑。","authors":"Zhen Qi ,&nbsp;Gregory M. Noetscher ,&nbsp;Alton Miles ,&nbsp;Konstantin Weise ,&nbsp;Thomas R. Knösche ,&nbsp;Cameron R. Cadman ,&nbsp;Alina R. Potashinsky ,&nbsp;Kelu Liu ,&nbsp;William A. Wartman ,&nbsp;Guillermo Nunez Ponasso ,&nbsp;Marom Bikson ,&nbsp;Hanbing Lu ,&nbsp;Zhi-De Deng ,&nbsp;Aapo R. Nummenmaa ,&nbsp;Sergey N. Makaroff","doi":"10.1016/j.brs.2024.12.1192","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities.</div></div><div><h3>Objective</h3><div>We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm³.</div></div><div><h3>Methods</h3><div>The map was obtained by applying a uniform brain stimulation electric field at three different polarizations and accurately computing microscopic field perturbations using the boundary element fast multipole method. We used the map to identify the effect of microscopic field perturbations on the activation thresholds of individual neurons. Previous relevant studies modeled a macroscopically homogeneous cortical volume.</div></div><div><h3>Result</h3><div>Our result shows that the microscopic field perturbations – an ‘electric field spatial noise’ with a mean value of zero – only modestly influence the macroscopically predicted stimulation field strengths necessary for neuronal activation. The thresholds do not change by more than 10 % on average.</div></div><div><h3>Conclusion</h3><div>Under the stated limitations and assumptions of our method, this result essentially justifies the conventional theory of \"invisible\" neurons embedded in a macroscopic brain model for transcranial magnetic and transcranial electrical stimulation. However, our result is solely sample-specific and is only relevant to this relatively small sample with 396 neurons. It largely neglects the effect of the microcapillary network. Furthermore, we only considered the uniform impressed field and a single-pulse stimulation time course.</div></div>","PeriodicalId":9206,"journal":{"name":"Brain Stimulation","volume":"18 1","pages":"Pages 77-93"},"PeriodicalIF":7.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling electric field model of microscopically realistic brain\",\"authors\":\"Zhen Qi ,&nbsp;Gregory M. Noetscher ,&nbsp;Alton Miles ,&nbsp;Konstantin Weise ,&nbsp;Thomas R. Knösche ,&nbsp;Cameron R. Cadman ,&nbsp;Alina R. Potashinsky ,&nbsp;Kelu Liu ,&nbsp;William A. Wartman ,&nbsp;Guillermo Nunez Ponasso ,&nbsp;Marom Bikson ,&nbsp;Hanbing Lu ,&nbsp;Zhi-De Deng ,&nbsp;Aapo R. Nummenmaa ,&nbsp;Sergey N. Makaroff\",\"doi\":\"10.1016/j.brs.2024.12.1192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities.</div></div><div><h3>Objective</h3><div>We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm³.</div></div><div><h3>Methods</h3><div>The map was obtained by applying a uniform brain stimulation electric field at three different polarizations and accurately computing microscopic field perturbations using the boundary element fast multipole method. We used the map to identify the effect of microscopic field perturbations on the activation thresholds of individual neurons. Previous relevant studies modeled a macroscopically homogeneous cortical volume.</div></div><div><h3>Result</h3><div>Our result shows that the microscopic field perturbations – an ‘electric field spatial noise’ with a mean value of zero – only modestly influence the macroscopically predicted stimulation field strengths necessary for neuronal activation. The thresholds do not change by more than 10 % on average.</div></div><div><h3>Conclusion</h3><div>Under the stated limitations and assumptions of our method, this result essentially justifies the conventional theory of \\\"invisible\\\" neurons embedded in a macroscopic brain model for transcranial magnetic and transcranial electrical stimulation. However, our result is solely sample-specific and is only relevant to this relatively small sample with 396 neurons. It largely neglects the effect of the microcapillary network. Furthermore, we only considered the uniform impressed field and a single-pulse stimulation time course.</div></div>\",\"PeriodicalId\":9206,\"journal\":{\"name\":\"Brain Stimulation\",\"volume\":\"18 1\",\"pages\":\"Pages 77-93\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Stimulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1935861X24013913\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Stimulation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1935861X24013913","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:微观尺度的脑刺激模型可能揭示各种刺激模式的新范式。目的:我们展示了迄今为止最大的L2/L3层小鼠初级视觉皮层大脑样本内的细胞外电场分布图。这是通过对连续切片电子显微镜图像的自动分析实现的,并改进了对图像缺陷的处理,覆盖的体积为250 × 140 × 90 μm³。方法:应用均匀的三种不同极化的脑刺激电场,采用边界元快速多极法精确计算微观场摄动,得到脑电图。我们使用这张图来确定微观场扰动对单个神经元激活阈值的影响。先前的相关研究模拟了宏观上均匀的皮质体积。结果:我们的研究结果表明,微观场扰动——一种平均值为零的“电场空间噪声”——对神经元激活所必需的宏观预测刺激场强度的影响很小。阈值的变化平均不超过10%。结论:在我们方法的局限性和假设下,这一结果基本上证明了传统的“看不见”神经元嵌入经颅磁刺激和经颅电刺激宏观脑模型的理论是正确的。然而,我们的结果仅仅是样本特异性的,并且只与这个相对较小的396个神经元样本相关。它在很大程度上忽略了微毛细血管网络的作用。此外,我们只考虑了均匀外加场和单脉冲刺激时间过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling electric field model of microscopically realistic brain

Background

Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities.

Objective

We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm³.

Methods

The map was obtained by applying a uniform brain stimulation electric field at three different polarizations and accurately computing microscopic field perturbations using the boundary element fast multipole method. We used the map to identify the effect of microscopic field perturbations on the activation thresholds of individual neurons. Previous relevant studies modeled a macroscopically homogeneous cortical volume.

Result

Our result shows that the microscopic field perturbations – an ‘electric field spatial noise’ with a mean value of zero – only modestly influence the macroscopically predicted stimulation field strengths necessary for neuronal activation. The thresholds do not change by more than 10 % on average.

Conclusion

Under the stated limitations and assumptions of our method, this result essentially justifies the conventional theory of "invisible" neurons embedded in a macroscopic brain model for transcranial magnetic and transcranial electrical stimulation. However, our result is solely sample-specific and is only relevant to this relatively small sample with 396 neurons. It largely neglects the effect of the microcapillary network. Furthermore, we only considered the uniform impressed field and a single-pulse stimulation time course.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Stimulation
Brain Stimulation 医学-临床神经学
CiteScore
13.10
自引率
9.10%
发文量
256
审稿时长
72 days
期刊介绍: Brain Stimulation publishes on the entire field of brain stimulation, including noninvasive and invasive techniques and technologies that alter brain function through the use of electrical, magnetic, radiowave, or focally targeted pharmacologic stimulation. Brain Stimulation aims to be the premier journal for publication of original research in the field of neuromodulation. The journal includes: a) Original articles; b) Short Communications; c) Invited and original reviews; d) Technology and methodological perspectives (reviews of new devices, description of new methods, etc.); and e) Letters to the Editor. Special issues of the journal will be considered based on scientific merit.
期刊最新文献
Vagus Nerve Stimulation Therapy for Treatment-Resistant PTSD. Optogenetic stimulation of cell bodies versus axonal terminals generate comparable activity and functional connectivity patterns in the brain. MRgFUS pallidothalamic tractotomy following GPi DBS in a patient with refractory hemichorea: A case report. Long-term Transcranial Direct Current Stimulation for Cerebral Perfusion in Chronic Infarction with Cerebral Artery Steno-occlusion. Subjective Patient Rating as a Novel Feedback Signal for DBS Programming in Parkinson's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1