Vinoth Seralan, D Chandrasekhar, Sarasu Pakiriswamy, Karthikeyan Rajagopal
{"title":"具有记忆效应和随机性的自适应突触神经网络的集体行为。","authors":"Vinoth Seralan, D Chandrasekhar, Sarasu Pakiriswamy, Karthikeyan Rajagopal","doi":"10.1007/s11571-024-10178-x","DOIUrl":null,"url":null,"abstract":"<p><p>This study delves into the examination of a network of adaptive synapse neurons characterized by a small-world network topology connected through electromagnetic flux and infused with randomness. First, this research extensively explores the existence of the global multi-stability of a single adaptive synapse-based neuron model with magnetic flux. The non-autonomous neuron model exhibits periodically switchable equilibrium states that are strongly related to the transitions between stable and unstable points in every whole periodic cycle, leading to the creation of global multi-stability. Various numerical measures, including bifurcation plots, phase plots, and basin of attraction, illustrate the intricate dynamics of diverse coexisting global firing activities. Moreover, the model is extended by coupling two neurons with a memristive synapse. The dynamics of the coupled neurons model are showcased with the help of largest Lyapunov exponents, and synchronized dynamics are viewed with the help of mean average error. Next, we consider a regular network of neurons connected to their nearest neighbors through the memristive synapse. We then reconstruct it into a small-world network by increasing the randomness in the rewiring links. Consequently, we observed collective behavior influenced by the number of neighborhood connections, coupling strength, and rewiring probability. We used spatio-temporal patterns, recurrence plots, as well as global-order parameters to verify the reported results.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"4071-4087"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655764/pdf/","citationCount":"0","resultStr":"{\"title\":\"Collective behavior of an adapting synapse-based neuronal network with memristive effect and randomness.\",\"authors\":\"Vinoth Seralan, D Chandrasekhar, Sarasu Pakiriswamy, Karthikeyan Rajagopal\",\"doi\":\"10.1007/s11571-024-10178-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study delves into the examination of a network of adaptive synapse neurons characterized by a small-world network topology connected through electromagnetic flux and infused with randomness. First, this research extensively explores the existence of the global multi-stability of a single adaptive synapse-based neuron model with magnetic flux. The non-autonomous neuron model exhibits periodically switchable equilibrium states that are strongly related to the transitions between stable and unstable points in every whole periodic cycle, leading to the creation of global multi-stability. Various numerical measures, including bifurcation plots, phase plots, and basin of attraction, illustrate the intricate dynamics of diverse coexisting global firing activities. Moreover, the model is extended by coupling two neurons with a memristive synapse. The dynamics of the coupled neurons model are showcased with the help of largest Lyapunov exponents, and synchronized dynamics are viewed with the help of mean average error. Next, we consider a regular network of neurons connected to their nearest neighbors through the memristive synapse. We then reconstruct it into a small-world network by increasing the randomness in the rewiring links. Consequently, we observed collective behavior influenced by the number of neighborhood connections, coupling strength, and rewiring probability. We used spatio-temporal patterns, recurrence plots, as well as global-order parameters to verify the reported results.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"18 6\",\"pages\":\"4071-4087\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655764/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10178-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10178-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Collective behavior of an adapting synapse-based neuronal network with memristive effect and randomness.
This study delves into the examination of a network of adaptive synapse neurons characterized by a small-world network topology connected through electromagnetic flux and infused with randomness. First, this research extensively explores the existence of the global multi-stability of a single adaptive synapse-based neuron model with magnetic flux. The non-autonomous neuron model exhibits periodically switchable equilibrium states that are strongly related to the transitions between stable and unstable points in every whole periodic cycle, leading to the creation of global multi-stability. Various numerical measures, including bifurcation plots, phase plots, and basin of attraction, illustrate the intricate dynamics of diverse coexisting global firing activities. Moreover, the model is extended by coupling two neurons with a memristive synapse. The dynamics of the coupled neurons model are showcased with the help of largest Lyapunov exponents, and synchronized dynamics are viewed with the help of mean average error. Next, we consider a regular network of neurons connected to their nearest neighbors through the memristive synapse. We then reconstruct it into a small-world network by increasing the randomness in the rewiring links. Consequently, we observed collective behavior influenced by the number of neighborhood connections, coupling strength, and rewiring probability. We used spatio-temporal patterns, recurrence plots, as well as global-order parameters to verify the reported results.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.