{"title":"6-姜辣素,一种生姜的生物活性化合物,改善大鼠高脂肪高果糖饮食诱导的非酒精相关脂肪性肝病","authors":"Shirly Gunawan, Vivian Soetikno, Erni Hernawati Purwaningsih, Frans Ferdinal, Puspita Eka Wuyung, Dwi Ramadhani","doi":"10.2147/JEP.S492971","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Endoplasmic reticulum (ER) stress has a prominent role in the pathogenesis of high-fat diet-induced non-alcohol related fatty liver disease (NAFLD). The aim of this study is to investigate the effects of 6-G on the reduction of ER stress-induced NAFLD in metabolic syndrome (MetS) rats.</p><p><strong>Methods: </strong>Twenty-five male Sprague-Dawley rats were fed with a high-fat high-fructose (HFHF) diet for 16 weeks. The rats were treated orally with 6-G (50,100, and 200 mg/kgBW) once daily for eight weeks. At Week 16, all animals were sacrificed, and serum and liver tissue were harvested for biochemical and structural analysis.</p><p><strong>Results: </strong>NAFLD liver rats were shown to have elevated protein expression of GRP78, and ER-associated apoptotic protein, such as IRE1, TRAF2, p-JNK, and p-NF-κB, which were considerably reduced by the 6-G at three doses treatment. Furthermore, a significant increase in liver apoptosis and non-alcoholic steatohepatitis (NAS) score were observed in the NAFLD rat liver and which were also attenuated by the 6-G treatment at three doses. 6-G treatment also reduced ALT, AST, and ALP serum levels.</p><p><strong>Conclusion: </strong>Considering all the findings, it is suggested that the 6-G treatment could be a potential candidate therapy in treating ER stress-induced NAFLD in rats.</p>","PeriodicalId":15846,"journal":{"name":"Journal of Experimental Pharmacology","volume":"16 ","pages":"455-466"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662909/pdf/","citationCount":"0","resultStr":"{\"title\":\"6-Gingerol, a Bioactive Compound of <i>Zingiber officinale</i>, Ameliorates High-Fat High-Fructose Diet-Induced Non-Alcoholic Related Fatty Liver Disease in Rats.\",\"authors\":\"Shirly Gunawan, Vivian Soetikno, Erni Hernawati Purwaningsih, Frans Ferdinal, Puspita Eka Wuyung, Dwi Ramadhani\",\"doi\":\"10.2147/JEP.S492971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Endoplasmic reticulum (ER) stress has a prominent role in the pathogenesis of high-fat diet-induced non-alcohol related fatty liver disease (NAFLD). The aim of this study is to investigate the effects of 6-G on the reduction of ER stress-induced NAFLD in metabolic syndrome (MetS) rats.</p><p><strong>Methods: </strong>Twenty-five male Sprague-Dawley rats were fed with a high-fat high-fructose (HFHF) diet for 16 weeks. The rats were treated orally with 6-G (50,100, and 200 mg/kgBW) once daily for eight weeks. At Week 16, all animals were sacrificed, and serum and liver tissue were harvested for biochemical and structural analysis.</p><p><strong>Results: </strong>NAFLD liver rats were shown to have elevated protein expression of GRP78, and ER-associated apoptotic protein, such as IRE1, TRAF2, p-JNK, and p-NF-κB, which were considerably reduced by the 6-G at three doses treatment. Furthermore, a significant increase in liver apoptosis and non-alcoholic steatohepatitis (NAS) score were observed in the NAFLD rat liver and which were also attenuated by the 6-G treatment at three doses. 6-G treatment also reduced ALT, AST, and ALP serum levels.</p><p><strong>Conclusion: </strong>Considering all the findings, it is suggested that the 6-G treatment could be a potential candidate therapy in treating ER stress-induced NAFLD in rats.</p>\",\"PeriodicalId\":15846,\"journal\":{\"name\":\"Journal of Experimental Pharmacology\",\"volume\":\"16 \",\"pages\":\"455-466\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/JEP.S492971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/JEP.S492971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
6-Gingerol, a Bioactive Compound of Zingiber officinale, Ameliorates High-Fat High-Fructose Diet-Induced Non-Alcoholic Related Fatty Liver Disease in Rats.
Purpose: Endoplasmic reticulum (ER) stress has a prominent role in the pathogenesis of high-fat diet-induced non-alcohol related fatty liver disease (NAFLD). The aim of this study is to investigate the effects of 6-G on the reduction of ER stress-induced NAFLD in metabolic syndrome (MetS) rats.
Methods: Twenty-five male Sprague-Dawley rats were fed with a high-fat high-fructose (HFHF) diet for 16 weeks. The rats were treated orally with 6-G (50,100, and 200 mg/kgBW) once daily for eight weeks. At Week 16, all animals were sacrificed, and serum and liver tissue were harvested for biochemical and structural analysis.
Results: NAFLD liver rats were shown to have elevated protein expression of GRP78, and ER-associated apoptotic protein, such as IRE1, TRAF2, p-JNK, and p-NF-κB, which were considerably reduced by the 6-G at three doses treatment. Furthermore, a significant increase in liver apoptosis and non-alcoholic steatohepatitis (NAS) score were observed in the NAFLD rat liver and which were also attenuated by the 6-G treatment at three doses. 6-G treatment also reduced ALT, AST, and ALP serum levels.
Conclusion: Considering all the findings, it is suggested that the 6-G treatment could be a potential candidate therapy in treating ER stress-induced NAFLD in rats.