基因组解析的全年动态揭示了广泛的巨型病毒微多样性。

IF 5 2区 生物学 Q1 MICROBIOLOGY mSystems Pub Date : 2025-01-21 Epub Date: 2024-12-23 DOI:10.1128/msystems.01168-24
Yue Fang, Lingjie Meng, Jun Xia, Yasuhiro Gotoh, Tetsuya Hayashi, Keizo Nagasaki, Hisashi Endo, Yusuke Okazaki, Hiroyuki Ogata
{"title":"基因组解析的全年动态揭示了广泛的巨型病毒微多样性。","authors":"Yue Fang, Lingjie Meng, Jun Xia, Yasuhiro Gotoh, Tetsuya Hayashi, Keizo Nagasaki, Hisashi Endo, Yusuke Okazaki, Hiroyuki Ogata","doi":"10.1128/msystems.01168-24","DOIUrl":null,"url":null,"abstract":"<p><p>Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown. In this study, we investigated the dynamics of giant viruses using time-series metagenomes from eutrophic coastal seawater samples collected over 20 months. A newly developed computational pipeline generated 1,065 high-quality genomes covering six major giant virus lineages. These genomic data revealed year-round recovery of the viral community structure at the study site and distinct dynamics of viral populations that were classified as persistent (<i>n</i> = 9), seasonal (<i>n</i> = 389), sporadic (<i>n</i> = 318), or others. By profiling the intra-species nucleotide-resolved microdiversity through read mapping, we also identified year-round recovery dynamics at subpopulation level for viruses classified as persistent or seasonal. Our results further indicated that giant viruses with broader niche breadth tended to exhibit higher levels of microdiversity. We argue that greater microdiversity of viruses likely enhances adaptability and thus survival under the virus-host arms race during prolonged interactions with their hosts.IMPORTANCERecent genome-resolved metagenomic surveys have uncovered the vast genomic diversity of giant viruses, which play significant roles in aquatic ecosystems by acting as bloom terminators and influencing biogeochemical cycles. However, the relationship between the ecological dynamics of giant viruses and underlying genetic structures of viral populations remains unresolved. In this study, we performed deep metagenomic sequencing of seawater samples collected across a time-series from a coastal area in Japan. The results revealed a significant positive correlation between microdiversity and temporal persistence of giant virus populations, suggesting that population structure is a crucial factor for adaptation and survival in the interactions with their hosts.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0116824"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748492/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-resolved year-round dynamics reveal a broad range of giant virus microdiversity.\",\"authors\":\"Yue Fang, Lingjie Meng, Jun Xia, Yasuhiro Gotoh, Tetsuya Hayashi, Keizo Nagasaki, Hisashi Endo, Yusuke Okazaki, Hiroyuki Ogata\",\"doi\":\"10.1128/msystems.01168-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown. In this study, we investigated the dynamics of giant viruses using time-series metagenomes from eutrophic coastal seawater samples collected over 20 months. A newly developed computational pipeline generated 1,065 high-quality genomes covering six major giant virus lineages. These genomic data revealed year-round recovery of the viral community structure at the study site and distinct dynamics of viral populations that were classified as persistent (<i>n</i> = 9), seasonal (<i>n</i> = 389), sporadic (<i>n</i> = 318), or others. By profiling the intra-species nucleotide-resolved microdiversity through read mapping, we also identified year-round recovery dynamics at subpopulation level for viruses classified as persistent or seasonal. Our results further indicated that giant viruses with broader niche breadth tended to exhibit higher levels of microdiversity. We argue that greater microdiversity of viruses likely enhances adaptability and thus survival under the virus-host arms race during prolonged interactions with their hosts.IMPORTANCERecent genome-resolved metagenomic surveys have uncovered the vast genomic diversity of giant viruses, which play significant roles in aquatic ecosystems by acting as bloom terminators and influencing biogeochemical cycles. However, the relationship between the ecological dynamics of giant viruses and underlying genetic structures of viral populations remains unresolved. In this study, we performed deep metagenomic sequencing of seawater samples collected across a time-series from a coastal area in Japan. The results revealed a significant positive correlation between microdiversity and temporal persistence of giant virus populations, suggesting that population structure is a crucial factor for adaptation and survival in the interactions with their hosts.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":\" \",\"pages\":\"e0116824\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748492/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.01168-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.01168-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

巨型病毒对海洋生态系统动力学至关重要,因为它们调节微真核生物群落结构,加速碳和营养循环,并通过共同进化过程驱动宿主的进化。以前报告的长期观察结果显示,这些病毒的丰度呈现季节性波动。然而,驱动这些病毒这种动态的潜在遗传机制在很大程度上仍然未知。在这项研究中,我们利用收集了20多个月的富营养化沿海海水样本的时间序列宏基因组研究了巨型病毒的动态。一个新开发的计算管道生成了1065个高质量的基因组,涵盖了6个主要的巨型病毒谱系。这些基因组数据揭示了研究地点全年病毒群落结构的恢复以及病毒种群的不同动态,这些病毒种群被分类为持久性(n = 9)、季节性(n = 389)、散发性(n = 318)或其他。通过读图分析种内核苷酸分辨的微多样性,我们还确定了亚种群水平上被分类为持久性或季节性的病毒的全年恢复动态。研究结果进一步表明,生态位宽度越宽的巨型病毒,其微多样性水平越高。我们认为,更大的病毒微多样性可能会增强适应性,从而在与宿主的长期相互作用中在病毒-宿主军备竞赛中存活下来。最近的基因组解析宏基因组调查揭示了巨型病毒的巨大基因组多样性,它们通过充当水华终止者和影响生物地球化学循环在水生生态系统中发挥重要作用。然而,巨型病毒的生态动力学与病毒种群的潜在遗传结构之间的关系仍未得到解决。在这项研究中,我们对从日本沿海地区收集的海水样本进行了深度宏基因组测序。结果显示,巨型病毒种群的微多样性与时间持久性之间存在显著正相关,表明种群结构是与其宿主相互作用中适应和生存的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-resolved year-round dynamics reveal a broad range of giant virus microdiversity.

Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown. In this study, we investigated the dynamics of giant viruses using time-series metagenomes from eutrophic coastal seawater samples collected over 20 months. A newly developed computational pipeline generated 1,065 high-quality genomes covering six major giant virus lineages. These genomic data revealed year-round recovery of the viral community structure at the study site and distinct dynamics of viral populations that were classified as persistent (n = 9), seasonal (n = 389), sporadic (n = 318), or others. By profiling the intra-species nucleotide-resolved microdiversity through read mapping, we also identified year-round recovery dynamics at subpopulation level for viruses classified as persistent or seasonal. Our results further indicated that giant viruses with broader niche breadth tended to exhibit higher levels of microdiversity. We argue that greater microdiversity of viruses likely enhances adaptability and thus survival under the virus-host arms race during prolonged interactions with their hosts.IMPORTANCERecent genome-resolved metagenomic surveys have uncovered the vast genomic diversity of giant viruses, which play significant roles in aquatic ecosystems by acting as bloom terminators and influencing biogeochemical cycles. However, the relationship between the ecological dynamics of giant viruses and underlying genetic structures of viral populations remains unresolved. In this study, we performed deep metagenomic sequencing of seawater samples collected across a time-series from a coastal area in Japan. The results revealed a significant positive correlation between microdiversity and temporal persistence of giant virus populations, suggesting that population structure is a crucial factor for adaptation and survival in the interactions with their hosts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mSystems
mSystems Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍: mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.
期刊最新文献
Timing matters in macrophage/CD4+ T cell interactions: an agent-based model comparing Mycobacterium tuberculosis host-pathogen interactions between latently infected and naïve individuals. Industrialization drives the gut microbiome and resistome of the Chinese populations. Correction for Taylor et al., "Depression in Individuals Coinfected with HIV and HCV Is Associated with Systematic Differences in the Gut Microbiome and Metabolome". Discovery of viruses and bacteria associated with swine respiratory disease on farms at a nationwide scale in China using metatranscriptomic and metagenomic sequencing. Exploration of the genetic landscape of bacterial dsDNA viruses reveals an ANI gap amid extensive mosaicism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1