SARS-CoV-2 Mpro对Nirmatrelvir (Paxlovid)耐药性的调查

IF 3.8 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Bio & Med Chem Au Pub Date : 2024-10-08 eCollection Date: 2024-12-18 DOI:10.1021/acsbiomedchemau.4c00045
Rasha M Yaghi, Dennis C Wylie, Collin L Andrews, Olivia H Dickert, Anjana Ram, Brent L Iverson
{"title":"SARS-CoV-2 Mpro对Nirmatrelvir (Paxlovid)耐药性的调查","authors":"Rasha M Yaghi, Dennis C Wylie, Collin L Andrews, Olivia H Dickert, Anjana Ram, Brent L Iverson","doi":"10.1021/acsbiomedchemau.4c00045","DOIUrl":null,"url":null,"abstract":"<p><p>The high throughput YESS 2.0 platform was used to screen a large library of SARS-CoV-2 M<sup>pro</sup> variants in the presence of nirmatrelvir. Of the 100 individual most prevalent mutations identified in the screen and reported here, the most common were E166V, L27V, N142S, A173V, and Y154N, along with their various combinations. <i>In vitro</i> analysis revealed that resistance to nirmatrelvir for these individual mutations, as well as all of the combinations we analyzed, was accompanied by decreased catalytic activity with the native substrate. Importantly, the mutations we identified have not appeared as significantly enriched in SARS-CoV-2 M<sup>pro</sup> sequences isolated from COVID-19 patients following the introduction of nirmatrelvir. We also analyzed three of the most common SARS-CoV-2 M<sup>pro</sup> mutations that have been seen in patients recently, and only a measured increase in nirmatrelvir resistance was seen when the more recently appearing A285V is added to both P132H and K90R. Taken together, our results predict that resistance to nirmatrelvir will be slower to develop than expected based on experience with other viral protease inhibitors, perhaps due in part to the close structural correspondence between nirmatrelvir and SARS-CoV-2 M<sup>pro</sup>'s preferred substrates.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 6","pages":"280-290"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659887/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Investigation of Nirmatrelvir (Paxlovid) Resistance in SARS-CoV-2 M<sup>pro</sup>.\",\"authors\":\"Rasha M Yaghi, Dennis C Wylie, Collin L Andrews, Olivia H Dickert, Anjana Ram, Brent L Iverson\",\"doi\":\"10.1021/acsbiomedchemau.4c00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high throughput YESS 2.0 platform was used to screen a large library of SARS-CoV-2 M<sup>pro</sup> variants in the presence of nirmatrelvir. Of the 100 individual most prevalent mutations identified in the screen and reported here, the most common were E166V, L27V, N142S, A173V, and Y154N, along with their various combinations. <i>In vitro</i> analysis revealed that resistance to nirmatrelvir for these individual mutations, as well as all of the combinations we analyzed, was accompanied by decreased catalytic activity with the native substrate. Importantly, the mutations we identified have not appeared as significantly enriched in SARS-CoV-2 M<sup>pro</sup> sequences isolated from COVID-19 patients following the introduction of nirmatrelvir. We also analyzed three of the most common SARS-CoV-2 M<sup>pro</sup> mutations that have been seen in patients recently, and only a measured increase in nirmatrelvir resistance was seen when the more recently appearing A285V is added to both P132H and K90R. Taken together, our results predict that resistance to nirmatrelvir will be slower to develop than expected based on experience with other viral protease inhibitors, perhaps due in part to the close structural correspondence between nirmatrelvir and SARS-CoV-2 M<sup>pro</sup>'s preferred substrates.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"4 6\",\"pages\":\"280-290\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659887/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomedchemau.4c00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsbiomedchemau.4c00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在nirmatrelvir存在的情况下,使用高通量YESS 2.0平台筛选SARS-CoV-2 Mpro变体的大型文库。在筛选和报告的100个最普遍的突变中,最常见的是E166V、L27V、N142S、A173V和Y154N,以及它们的各种组合。体外分析显示,这些个体突变以及我们分析的所有组合对nirmatrelvir的耐药性都伴随着对天然底物的催化活性降低。重要的是,在引入nirmatrelvir后,从COVID-19患者分离的SARS-CoV-2 Mpro序列中,我们发现的突变并未显着富集。我们还分析了最近在患者中发现的三种最常见的SARS-CoV-2 Mpro突变,当将最近出现的A285V添加到P132H和K90R中时,仅观察到尼马特利韦耐药性的明显增加。总而言之,我们的研究结果预测,对nirmatrelvir的耐药性将比基于其他病毒蛋白酶抑制剂的经验所预期的要慢,部分原因可能是nirmatrelvir与SARS-CoV-2 Mpro首选底物之间结构上的密切对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Investigation of Nirmatrelvir (Paxlovid) Resistance in SARS-CoV-2 Mpro.

The high throughput YESS 2.0 platform was used to screen a large library of SARS-CoV-2 Mpro variants in the presence of nirmatrelvir. Of the 100 individual most prevalent mutations identified in the screen and reported here, the most common were E166V, L27V, N142S, A173V, and Y154N, along with their various combinations. In vitro analysis revealed that resistance to nirmatrelvir for these individual mutations, as well as all of the combinations we analyzed, was accompanied by decreased catalytic activity with the native substrate. Importantly, the mutations we identified have not appeared as significantly enriched in SARS-CoV-2 Mpro sequences isolated from COVID-19 patients following the introduction of nirmatrelvir. We also analyzed three of the most common SARS-CoV-2 Mpro mutations that have been seen in patients recently, and only a measured increase in nirmatrelvir resistance was seen when the more recently appearing A285V is added to both P132H and K90R. Taken together, our results predict that resistance to nirmatrelvir will be slower to develop than expected based on experience with other viral protease inhibitors, perhaps due in part to the close structural correspondence between nirmatrelvir and SARS-CoV-2 Mpro's preferred substrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Bio & Med Chem Au
ACS Bio & Med Chem Au 药物、生物、化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Bacterial Cytochrome P450 Catalyzed Macrocyclization of Ribosomal Peptides. Bacterial Cytochrome P450 Catalyzed Macrocyclization of Ribosomal Peptides Chlorophyllase from Arabidopsis thaliana Reveals an Emerging Model for Controlling Chlorophyll Hydrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1