ABCH转运体对脂质和杀虫剂的挤压泵送

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Pub Date : 2024-12-24 DOI:10.1016/j.cell.2024.11.033
Jinli Chen, Yanwei Duan, Yuanyuan Zhou, Qing Yang
{"title":"ABCH转运体对脂质和杀虫剂的挤压泵送","authors":"Jinli Chen, Yanwei Duan, Yuanyuan Zhou, Qing Yang","doi":"10.1016/j.cell.2024.11.033","DOIUrl":null,"url":null,"abstract":"ATP-binding cassette (ABC) transporter subfamily H is only identified in arthropods and zebrafish. It transports lipids and is related to insecticide resistance. However, the precise mechanisms of its functions remain elusive. Here, we report cryoelectron microscopy (cryo-EM) structures of an ABCH from <em>Tribolium castaneum</em>, a worldwide pest of stored grains, in complex with an HEK293 cell-ceramide lipid, a fluorescent-labeled ceramide, a carbamate insecticide, and a maltose detergent inhibitor. We revealed a narrow, long, and arched substrate-binding tunnel in the transmembrane domains of the transporter dimer with two arginine-gated cytoplasmic entries for the binding and transport of lipids or insecticides. A pair of glutamines above the tunnel acts as a gate for directing substrate to be extruded via a vent-like hydrophilic exit to the extracellular side of the membrane upon ATP binding. Our structures and biochemical data provide mechanistic understanding of lipid transport, insecticide detoxification, and the inhibition of transporter activity by branched maltose detergents.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"27 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Squeeze pumping of lipids and insecticides by ABCH transporter\",\"authors\":\"Jinli Chen, Yanwei Duan, Yuanyuan Zhou, Qing Yang\",\"doi\":\"10.1016/j.cell.2024.11.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ATP-binding cassette (ABC) transporter subfamily H is only identified in arthropods and zebrafish. It transports lipids and is related to insecticide resistance. However, the precise mechanisms of its functions remain elusive. Here, we report cryoelectron microscopy (cryo-EM) structures of an ABCH from <em>Tribolium castaneum</em>, a worldwide pest of stored grains, in complex with an HEK293 cell-ceramide lipid, a fluorescent-labeled ceramide, a carbamate insecticide, and a maltose detergent inhibitor. We revealed a narrow, long, and arched substrate-binding tunnel in the transmembrane domains of the transporter dimer with two arginine-gated cytoplasmic entries for the binding and transport of lipids or insecticides. A pair of glutamines above the tunnel acts as a gate for directing substrate to be extruded via a vent-like hydrophilic exit to the extracellular side of the membrane upon ATP binding. Our structures and biochemical data provide mechanistic understanding of lipid transport, insecticide detoxification, and the inhibition of transporter activity by branched maltose detergents.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2024.11.033\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.11.033","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

atp结合盒(ABC)转运蛋白H亚家族仅在节肢动物和斑马鱼中发现。它运输脂质,并与杀虫剂抗性有关。然而,其功能的确切机制仍然难以捉摸。在这里,我们报道了来自castaneum(一种世界性的储粮害虫)的ABCH与HEK293细胞神经酰胺脂质、荧光标记神经酰胺、氨基甲酸酯杀虫剂和麦麸清洁剂抑制剂的复合物的冷冻电镜(cryo-EM)结构。我们在转运蛋白二聚体的跨膜结构域中发现了一个狭长的拱形底物结合通道,其中有两个精氨酸门控的细胞质入口,用于脂质或杀虫剂的结合和运输。隧道上方的一对谷氨酰胺充当门,在ATP结合时,引导底物通过类似气孔的亲水性出口挤压到膜的细胞外侧。我们的结构和生化数据为脂质转运、杀虫剂解毒和分枝麦芽糖洗涤剂对转运蛋白活性的抑制提供了机制理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Squeeze pumping of lipids and insecticides by ABCH transporter
ATP-binding cassette (ABC) transporter subfamily H is only identified in arthropods and zebrafish. It transports lipids and is related to insecticide resistance. However, the precise mechanisms of its functions remain elusive. Here, we report cryoelectron microscopy (cryo-EM) structures of an ABCH from Tribolium castaneum, a worldwide pest of stored grains, in complex with an HEK293 cell-ceramide lipid, a fluorescent-labeled ceramide, a carbamate insecticide, and a maltose detergent inhibitor. We revealed a narrow, long, and arched substrate-binding tunnel in the transmembrane domains of the transporter dimer with two arginine-gated cytoplasmic entries for the binding and transport of lipids or insecticides. A pair of glutamines above the tunnel acts as a gate for directing substrate to be extruded via a vent-like hydrophilic exit to the extracellular side of the membrane upon ATP binding. Our structures and biochemical data provide mechanistic understanding of lipid transport, insecticide detoxification, and the inhibition of transporter activity by branched maltose detergents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
期刊最新文献
Brainstem neuropeptidergic neurons link a neurohumoral axis to satiation Engineered commensals for targeted nose-to-brain drug delivery Rhodoquinone carries electrons in the mammalian electron transport chain Long-term imaging of individual ribosomes reveals ribosome cooperativity in mRNA translation Resolving the three-dimensional interactome of human accelerated regions during human and chimpanzee neurodevelopment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1