相似的缺陷,不同的结果:肾上腺髓质琥珀酸脱氢酶缺失与副神经节瘤成纤维细胞培养模型。

IF 6 3区 医学 Q1 CELL BIOLOGY Cancer & Metabolism Pub Date : 2024-12-23 DOI:10.1186/s40170-024-00369-9
Fatimah J Al Khazal, Sanjana Mahadev Bhat, Yuxiang Zhu, Cristina M de Araujo Correia, Sherry X Zhou, Brandon A Wilbanks, Clifford D Folmes, Gary C Sieck, Judith Favier, L James Maher
{"title":"相似的缺陷,不同的结果:肾上腺髓质琥珀酸脱氢酶缺失与副神经节瘤成纤维细胞培养模型。","authors":"Fatimah J Al Khazal, Sanjana Mahadev Bhat, Yuxiang Zhu, Cristina M de Araujo Correia, Sherry X Zhou, Brandon A Wilbanks, Clifford D Folmes, Gary C Sieck, Judith Favier, L James Maher","doi":"10.1186/s40170-024-00369-9","DOIUrl":null,"url":null,"abstract":"<p><p>Heterozygosity for loss-of-function alleles of the genes encoding the four subunits of succinate dehydrogenase (SDHA, SDHB, SDHC, SDHD), as well as the SDHAF2 assembly factor predispose affected individuals to pheochromocytoma and paraganglioma (PPGL), two rare neuroendocrine tumors that arise from neural crest-derived paraganglia. Tumorigenesis results from loss of the remaining functional SDHx gene copy, leading to a cell with no functional SDH and a defective tricarboxylic acid (TCA) cycle. It is believed that the subsequent accumulation of succinate competitively inhibits multiple dioxygenase enzymes that normally suppress hypoxic signaling and demethylate histones and DNA, ultimately leading to increased expression of genes involved in angiogenesis and cell proliferation. Why SDH loss is selectively tumorigenic in neuroendocrine cells remains poorly understood. In the absence of SDH-loss tumor-derived cell models, the cellular burden of SDH loss and succinate accumulation have been investigated through conditional knockouts of SDH subunits in pre-existing murine or human cell lines with varying degrees of clinical relevance. Here we characterize two available murine SDH-loss cell lines, immortalized adrenally-derived premature chromaffin cells vs. immortalized fibroblasts, at a level of detail beyond that currently reported in the literature and with the intention of laying the foundation for future investigations into adaptive pathways and vulnerabilities in SDH-loss cells. We report different mechanistic and phenotypic manifestations of SDH subunit loss in the presented cellular contexts. These findings highlight similarities and differences in the cellular response to SDH loss between the two cell models. We show that adrenally-derived cells display more severe morphological cellular and mitochondrial alterations, yet are unique in preserving residual Complex I function, perhaps allowing them to better tolerate SDH loss, thus making them a closer model to SDH-loss PPGL relative to fibroblasts.(281 words).</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"39"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668036/pdf/","citationCount":"0","resultStr":"{\"title\":\"Similar deficiencies, different outcomes: succinate dehydrogenase loss in adrenal medulla vs. fibroblast cell culture models of paraganglioma.\",\"authors\":\"Fatimah J Al Khazal, Sanjana Mahadev Bhat, Yuxiang Zhu, Cristina M de Araujo Correia, Sherry X Zhou, Brandon A Wilbanks, Clifford D Folmes, Gary C Sieck, Judith Favier, L James Maher\",\"doi\":\"10.1186/s40170-024-00369-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heterozygosity for loss-of-function alleles of the genes encoding the four subunits of succinate dehydrogenase (SDHA, SDHB, SDHC, SDHD), as well as the SDHAF2 assembly factor predispose affected individuals to pheochromocytoma and paraganglioma (PPGL), two rare neuroendocrine tumors that arise from neural crest-derived paraganglia. Tumorigenesis results from loss of the remaining functional SDHx gene copy, leading to a cell with no functional SDH and a defective tricarboxylic acid (TCA) cycle. It is believed that the subsequent accumulation of succinate competitively inhibits multiple dioxygenase enzymes that normally suppress hypoxic signaling and demethylate histones and DNA, ultimately leading to increased expression of genes involved in angiogenesis and cell proliferation. Why SDH loss is selectively tumorigenic in neuroendocrine cells remains poorly understood. In the absence of SDH-loss tumor-derived cell models, the cellular burden of SDH loss and succinate accumulation have been investigated through conditional knockouts of SDH subunits in pre-existing murine or human cell lines with varying degrees of clinical relevance. Here we characterize two available murine SDH-loss cell lines, immortalized adrenally-derived premature chromaffin cells vs. immortalized fibroblasts, at a level of detail beyond that currently reported in the literature and with the intention of laying the foundation for future investigations into adaptive pathways and vulnerabilities in SDH-loss cells. We report different mechanistic and phenotypic manifestations of SDH subunit loss in the presented cellular contexts. These findings highlight similarities and differences in the cellular response to SDH loss between the two cell models. We show that adrenally-derived cells display more severe morphological cellular and mitochondrial alterations, yet are unique in preserving residual Complex I function, perhaps allowing them to better tolerate SDH loss, thus making them a closer model to SDH-loss PPGL relative to fibroblasts.(281 words).</p>\",\"PeriodicalId\":9418,\"journal\":{\"name\":\"Cancer & Metabolism\",\"volume\":\"12 1\",\"pages\":\"39\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668036/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40170-024-00369-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-024-00369-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

琥珀酸脱氢酶4个亚基(SDHA、SDHB、SDHC、SDHD)和SDHAF2组装因子基因的功能缺失等位基因杂合性使受影响个体易患嗜铬细胞瘤和副神经节瘤(PPGL),这两种罕见的神经内分泌肿瘤起源于神经冠源性副神经节。肿瘤的发生是由于剩余的功能SDH基因拷贝的丢失,导致细胞没有功能的SDH和缺陷的三羧酸(TCA)循环。人们认为,随后琥珀酸盐的积累竞争性地抑制了多种双加氧酶,这些酶通常抑制缺氧信号和去甲基化组蛋白和DNA,最终导致参与血管生成和细胞增殖的基因表达增加。为什么SDH丢失在神经内分泌细胞中选择性致瘤性仍然知之甚少。在缺乏SDH缺失肿瘤衍生细胞模型的情况下,通过在已有的具有不同程度临床相关性的小鼠或人类细胞系中条件敲除SDH亚基,研究了SDH缺失和琥珀酸盐积累的细胞负担。在这里,我们描述了两种可用的小鼠sdh缺失细胞系,永生化肾上腺来源的过早染色质细胞和永生化成纤维细胞,其详细程度超过了目前文献报道的水平,并旨在为未来研究sdh缺失细胞的适应途径和脆弱性奠定基础。我们报告不同的机制和表型表现的SDH亚基损失在目前的细胞背景。这些发现突出了两种细胞模型对SDH损失的细胞反应的异同。我们发现肾上腺源性细胞表现出更严重的形态细胞和线粒体改变,但在保留残余复合体I功能方面是独一无二的,这可能使它们能够更好地耐受SDH损失,从而使它们相对于成纤维细胞更接近SDH损失的PPGL模型。(281字)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Similar deficiencies, different outcomes: succinate dehydrogenase loss in adrenal medulla vs. fibroblast cell culture models of paraganglioma.

Heterozygosity for loss-of-function alleles of the genes encoding the four subunits of succinate dehydrogenase (SDHA, SDHB, SDHC, SDHD), as well as the SDHAF2 assembly factor predispose affected individuals to pheochromocytoma and paraganglioma (PPGL), two rare neuroendocrine tumors that arise from neural crest-derived paraganglia. Tumorigenesis results from loss of the remaining functional SDHx gene copy, leading to a cell with no functional SDH and a defective tricarboxylic acid (TCA) cycle. It is believed that the subsequent accumulation of succinate competitively inhibits multiple dioxygenase enzymes that normally suppress hypoxic signaling and demethylate histones and DNA, ultimately leading to increased expression of genes involved in angiogenesis and cell proliferation. Why SDH loss is selectively tumorigenic in neuroendocrine cells remains poorly understood. In the absence of SDH-loss tumor-derived cell models, the cellular burden of SDH loss and succinate accumulation have been investigated through conditional knockouts of SDH subunits in pre-existing murine or human cell lines with varying degrees of clinical relevance. Here we characterize two available murine SDH-loss cell lines, immortalized adrenally-derived premature chromaffin cells vs. immortalized fibroblasts, at a level of detail beyond that currently reported in the literature and with the intention of laying the foundation for future investigations into adaptive pathways and vulnerabilities in SDH-loss cells. We report different mechanistic and phenotypic manifestations of SDH subunit loss in the presented cellular contexts. These findings highlight similarities and differences in the cellular response to SDH loss between the two cell models. We show that adrenally-derived cells display more severe morphological cellular and mitochondrial alterations, yet are unique in preserving residual Complex I function, perhaps allowing them to better tolerate SDH loss, thus making them a closer model to SDH-loss PPGL relative to fibroblasts.(281 words).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
1.70%
发文量
17
审稿时长
14 weeks
期刊介绍: Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.
期刊最新文献
GDF15-mediated enhancement of the Warburg effect sustains multiple myeloma growth via TGFβ signaling pathway. Exploratory profiling of metabolites in cerebrospinal fluid using a commercially available targeted LC-MS based metabolomics kit to discriminate leptomeningeal metastasis. Phosphatidylinositol promoted the proliferation and invasion of pituitary adenoma cells by regulating POU1F1 expression. Silencing of STEAP3 suppresses cervical cancer cell proliferation and migration via JAK/STAT3 signaling pathway. Similar deficiencies, different outcomes: succinate dehydrogenase loss in adrenal medulla vs. fibroblast cell culture models of paraganglioma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1