{"title":"纳米介导的siRNA药物递送的最新见解。","authors":"Venkateshwaran Krishnaswami, Kumar Janakiraman, Vaidevi Sethuraman, Jacob Raja, Selvakumar Muruganantham, Senthilkumar Chelladurai","doi":"10.2174/0113892002339055241211050131","DOIUrl":null,"url":null,"abstract":"<p><p>Gene silencing is the characteristic that inhibits gene expression afforded by siRNA interference. The efficacy of the delivery system in terms of precision, efficacy, and stability can be enhanced by genebased drug delivery options. The delivery challenges and their associated side effects create a challenge for the delivery of gene-based drug delivery carriers. Nano-based delivery systems were reported to improve the efficacy of therapy. The absence of an efficient delivery mechanism that shields siRNA from nuclease degradation delivers it to cancer cells, and releases it into the cytoplasm of specific cancer cells without causing side effects is currently the greatest obstacle to the practical implementation of siRNA therapy. This article focuses on general aspects of siRNA and various siRNA nanocarrier-based formulations. In the near future, we will move towards the siRNA-based drug delivery approach.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Insights into Nano-mediated siRNA Drug Delivery.\",\"authors\":\"Venkateshwaran Krishnaswami, Kumar Janakiraman, Vaidevi Sethuraman, Jacob Raja, Selvakumar Muruganantham, Senthilkumar Chelladurai\",\"doi\":\"10.2174/0113892002339055241211050131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene silencing is the characteristic that inhibits gene expression afforded by siRNA interference. The efficacy of the delivery system in terms of precision, efficacy, and stability can be enhanced by genebased drug delivery options. The delivery challenges and their associated side effects create a challenge for the delivery of gene-based drug delivery carriers. Nano-based delivery systems were reported to improve the efficacy of therapy. The absence of an efficient delivery mechanism that shields siRNA from nuclease degradation delivers it to cancer cells, and releases it into the cytoplasm of specific cancer cells without causing side effects is currently the greatest obstacle to the practical implementation of siRNA therapy. This article focuses on general aspects of siRNA and various siRNA nanocarrier-based formulations. In the near future, we will move towards the siRNA-based drug delivery approach.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892002339055241211050131\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002339055241211050131","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Recent Insights into Nano-mediated siRNA Drug Delivery.
Gene silencing is the characteristic that inhibits gene expression afforded by siRNA interference. The efficacy of the delivery system in terms of precision, efficacy, and stability can be enhanced by genebased drug delivery options. The delivery challenges and their associated side effects create a challenge for the delivery of gene-based drug delivery carriers. Nano-based delivery systems were reported to improve the efficacy of therapy. The absence of an efficient delivery mechanism that shields siRNA from nuclease degradation delivers it to cancer cells, and releases it into the cytoplasm of specific cancer cells without causing side effects is currently the greatest obstacle to the practical implementation of siRNA therapy. This article focuses on general aspects of siRNA and various siRNA nanocarrier-based formulations. In the near future, we will move towards the siRNA-based drug delivery approach.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.