从冰岛地下地热含水层中分离出的氧化亚铁苯杆菌。

IF 3.3 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Systematic and applied microbiology Pub Date : 2025-01-01 DOI:10.1016/j.syapm.2024.126578
Eva Pouder, Erwann Vince, Karen Jacquot, Maimouna batoma Traoré, Ashley Grosche, Maria Ludwig, Mohamed Jebbar, Loïs Maignien, Karine Alain, Sophie Mieszkin
{"title":"从冰岛地下地热含水层中分离出的氧化亚铁苯杆菌。","authors":"Eva Pouder,&nbsp;Erwann Vince,&nbsp;Karen Jacquot,&nbsp;Maimouna batoma Traoré,&nbsp;Ashley Grosche,&nbsp;Maria Ludwig,&nbsp;Mohamed Jebbar,&nbsp;Loïs Maignien,&nbsp;Karine Alain,&nbsp;Sophie Mieszkin","doi":"10.1016/j.syapm.2024.126578","DOIUrl":null,"url":null,"abstract":"<div><div>A novel bacterial strain, HK31-G<sup>T</sup>, was isolated from a subsurface geothermal aquifer (Hellisheidi, SW-Iceland) and was characterized using a polyphasic taxonomic approach. Phylogenetic analysis of 16S rRNA gene along with phylogenomic position indicated that the novel strain belongs to the genus <em>Phenylobacterium</em>. Cells are motile Gram-negative thin rods. Physiological characterization showed that strain HK31-G<sup>T</sup> is a mesophilic bacterium able to grow from 10 to 30 °C, at pH values between 6 and 8 and at NaCl concentrations between 0 and 0.5 %. Optimal growth was observed without sodium chloride at 25 °C and pH 6. Strain HK31-G<sup>T</sup> is chemoorganoheterotroph and its major saturated fatty acids are C<sub>18:1</sub><em>ω7c</em>, C<sub>16</sub><sub>:1</sub><em>ω6c</em> and C<sub>16:0</sub>, the predominant quinone is Q-10 and the major polar lipid is phosphatidylglycerol. The new strain also possesses the capacity to use ferrous iron (Fe(II)) as the sole energy source and can also be considered as a chemolithoautotrophic microorganism. The overall genome of strain HK31-G<sup>T</sup> was estimated to be 4.46 Mbp in size with a DNA G + C content of 67.95 %. Genes involved in iron metabolism were identified, but no genes typically involved in Fe(II)-oxidation were found. According to the overall genome relatedness indices (OGRI) values, six MAGs from groundwater have been assigned to the same species as the new strain HK31-G<sup>T</sup>. Furthermore, OGRI values between the genome of strain HK31-G<sup>T</sup> and the genomes of its closest relatives are below the species delineation threshold. Therefore, given the polyphasic approach used, strain HK31-G<sup>T</sup> represents a novel species of the genus <em>Phenylobacterium</em>, for which the name <em>Phenylobacterium ferrooxidans</em> sp. nov. is proposed. The type strain is HK31-G<sup>T</sup> (DSM 116432<sup>T</sup> = UBOCC-M-3429<sup>T</sup> = LMG 33376<sup>T</sup>).</div></div>","PeriodicalId":22124,"journal":{"name":"Systematic and applied microbiology","volume":"48 1","pages":"Article 126578"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenylobacterium ferrooxidans sp. nov., isolated from a sub-surface geothermal aquifer in Iceland\",\"authors\":\"Eva Pouder,&nbsp;Erwann Vince,&nbsp;Karen Jacquot,&nbsp;Maimouna batoma Traoré,&nbsp;Ashley Grosche,&nbsp;Maria Ludwig,&nbsp;Mohamed Jebbar,&nbsp;Loïs Maignien,&nbsp;Karine Alain,&nbsp;Sophie Mieszkin\",\"doi\":\"10.1016/j.syapm.2024.126578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel bacterial strain, HK31-G<sup>T</sup>, was isolated from a subsurface geothermal aquifer (Hellisheidi, SW-Iceland) and was characterized using a polyphasic taxonomic approach. Phylogenetic analysis of 16S rRNA gene along with phylogenomic position indicated that the novel strain belongs to the genus <em>Phenylobacterium</em>. Cells are motile Gram-negative thin rods. Physiological characterization showed that strain HK31-G<sup>T</sup> is a mesophilic bacterium able to grow from 10 to 30 °C, at pH values between 6 and 8 and at NaCl concentrations between 0 and 0.5 %. Optimal growth was observed without sodium chloride at 25 °C and pH 6. Strain HK31-G<sup>T</sup> is chemoorganoheterotroph and its major saturated fatty acids are C<sub>18:1</sub><em>ω7c</em>, C<sub>16</sub><sub>:1</sub><em>ω6c</em> and C<sub>16:0</sub>, the predominant quinone is Q-10 and the major polar lipid is phosphatidylglycerol. The new strain also possesses the capacity to use ferrous iron (Fe(II)) as the sole energy source and can also be considered as a chemolithoautotrophic microorganism. The overall genome of strain HK31-G<sup>T</sup> was estimated to be 4.46 Mbp in size with a DNA G + C content of 67.95 %. Genes involved in iron metabolism were identified, but no genes typically involved in Fe(II)-oxidation were found. According to the overall genome relatedness indices (OGRI) values, six MAGs from groundwater have been assigned to the same species as the new strain HK31-G<sup>T</sup>. Furthermore, OGRI values between the genome of strain HK31-G<sup>T</sup> and the genomes of its closest relatives are below the species delineation threshold. Therefore, given the polyphasic approach used, strain HK31-G<sup>T</sup> represents a novel species of the genus <em>Phenylobacterium</em>, for which the name <em>Phenylobacterium ferrooxidans</em> sp. nov. is proposed. The type strain is HK31-G<sup>T</sup> (DSM 116432<sup>T</sup> = UBOCC-M-3429<sup>T</sup> = LMG 33376<sup>T</sup>).</div></div>\",\"PeriodicalId\":22124,\"journal\":{\"name\":\"Systematic and applied microbiology\",\"volume\":\"48 1\",\"pages\":\"Article 126578\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic and applied microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723202024000924\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic and applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202024000924","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从冰岛西南部Hellisheidi地下地热含水层中分离到一株新菌株HK31-GT,并采用多相分类学方法对其进行了鉴定。16S rRNA基因的系统发育分析和系统发育定位表明该菌株属于苯基杆菌属。细胞为可运动的革兰氏阴性细杆。生理特性表明,菌株HK31-GT是一种中温细菌,能在10 ~ 30℃、pH值6 ~ 8、NaCl浓度0 ~ 0.5%的条件下生长。在不添加氯化钠的条件下,在25°C和pH 6下生长最佳。菌株HK31-GT为化学有机异养菌,其主要饱和脂肪酸为C18:1ω7c、C16:1ω6c和C16:0,主要醌为Q-10,主要极性脂质为磷脂酰甘油。新菌株还具有利用亚铁(Fe(II))作为唯一能量来源的能力,也可以认为是一种趋化岩石自养微生物。菌株HK31-GT的总基因组大小为4.46 Mbp, DNA G + C含量为67.95%。参与铁代谢的基因被确定,但没有发现典型的参与铁(II)氧化的基因。根据总体基因组亲缘性指数(OGRI),从地下水中提取的6个mag与新菌株HK31-GT属于同一种。此外,菌株HK31-GT基因组与其近缘系基因组的OGRI值低于种划分阈值。因此,考虑到所采用的多相方法,菌株HK31-GT代表了苯基杆菌属的一个新种,因此建议将其命名为苯基杆菌ferrooxidans sp. 11。型应变为HK31-GT (DSM 116432T = UBOCC-M-3429T = LMG 33376T)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phenylobacterium ferrooxidans sp. nov., isolated from a sub-surface geothermal aquifer in Iceland
A novel bacterial strain, HK31-GT, was isolated from a subsurface geothermal aquifer (Hellisheidi, SW-Iceland) and was characterized using a polyphasic taxonomic approach. Phylogenetic analysis of 16S rRNA gene along with phylogenomic position indicated that the novel strain belongs to the genus Phenylobacterium. Cells are motile Gram-negative thin rods. Physiological characterization showed that strain HK31-GT is a mesophilic bacterium able to grow from 10 to 30 °C, at pH values between 6 and 8 and at NaCl concentrations between 0 and 0.5 %. Optimal growth was observed without sodium chloride at 25 °C and pH 6. Strain HK31-GT is chemoorganoheterotroph and its major saturated fatty acids are C18:1ω7c, C16:1ω6c and C16:0, the predominant quinone is Q-10 and the major polar lipid is phosphatidylglycerol. The new strain also possesses the capacity to use ferrous iron (Fe(II)) as the sole energy source and can also be considered as a chemolithoautotrophic microorganism. The overall genome of strain HK31-GT was estimated to be 4.46 Mbp in size with a DNA G + C content of 67.95 %. Genes involved in iron metabolism were identified, but no genes typically involved in Fe(II)-oxidation were found. According to the overall genome relatedness indices (OGRI) values, six MAGs from groundwater have been assigned to the same species as the new strain HK31-GT. Furthermore, OGRI values between the genome of strain HK31-GT and the genomes of its closest relatives are below the species delineation threshold. Therefore, given the polyphasic approach used, strain HK31-GT represents a novel species of the genus Phenylobacterium, for which the name Phenylobacterium ferrooxidans sp. nov. is proposed. The type strain is HK31-GT (DSM 116432T = UBOCC-M-3429T = LMG 33376T).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systematic and applied microbiology
Systematic and applied microbiology 生物-生物工程与应用微生物
CiteScore
7.50
自引率
5.90%
发文量
57
审稿时长
22 days
期刊介绍: Systematic and Applied Microbiology deals with various aspects of microbial diversity and systematics of prokaryotes. It focuses on Bacteria and Archaea; eukaryotic microorganisms will only be considered in rare cases. The journal perceives a broad understanding of microbial diversity and encourages the submission of manuscripts from the following branches of microbiology:
期刊最新文献
Description and genomic characterization of Mesorhizobium marinum sp. nov., a bacterium isolated from sea sediment Flavobacterium plantiphilum sp. nov., Flavobacterium rhizophilum sp. nov., Flavobacterium rhizosphaerae sp. nov., Chryseobacterium terrae sp. nov., and Sphingomonas plantiphila sp. nov. isolated from salty soil showing plant growth promoting potential MIRRI-ERIC's position on the recent evolution of the international code of nomenclature of prokaryotes Editorial Board Elusive marine Verrucomicrobiota: Seasonally abundant members of the novel genera Seribacter and Chordibacter specialize in degrading sulfated glycans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1