在看不见的危险中航行:在人工智能时代保护医学成像。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-12-09 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1400732
Alexandra Maertens, Steve Brykman, Thomas Hartung, Andrei Gafita, Harrison Bai, David Hoelzer, Ed Skoudis, Channing Judith Paller
{"title":"在看不见的危险中航行:在人工智能时代保护医学成像。","authors":"Alexandra Maertens, Steve Brykman, Thomas Hartung, Andrei Gafita, Harrison Bai, David Hoelzer, Ed Skoudis, Channing Judith Paller","doi":"10.3389/frai.2024.1400732","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the increasing significance of artificial intelligence (AI) in healthcare, there has been increased attention - including a Presidential executive order to create an AI Safety Institute - to the potential threats posed by AI. While much attention has been given to the conventional risks AI poses to cybersecurity, and critical infrastructure, here we provide an overview of some unique challenges of AI for the medical community. Above and beyond obvious concerns about vetting algorithms that impact patient care, there are additional subtle yet equally important things to consider: the potential harm AI poses to its own integrity and the broader medical information ecosystem. Recognizing the role of healthcare professionals as both consumers and contributors to AI training data, this article advocates for a proactive approach in understanding and shaping the data that underpins AI systems, emphasizing the need for informed engagement to maximize the benefits of AI while mitigating the risks.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1400732"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665297/pdf/","citationCount":"0","resultStr":"{\"title\":\"Navigating the unseen peril: safeguarding medical imaging in the age of AI.\",\"authors\":\"Alexandra Maertens, Steve Brykman, Thomas Hartung, Andrei Gafita, Harrison Bai, David Hoelzer, Ed Skoudis, Channing Judith Paller\",\"doi\":\"10.3389/frai.2024.1400732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the increasing significance of artificial intelligence (AI) in healthcare, there has been increased attention - including a Presidential executive order to create an AI Safety Institute - to the potential threats posed by AI. While much attention has been given to the conventional risks AI poses to cybersecurity, and critical infrastructure, here we provide an overview of some unique challenges of AI for the medical community. Above and beyond obvious concerns about vetting algorithms that impact patient care, there are additional subtle yet equally important things to consider: the potential harm AI poses to its own integrity and the broader medical information ecosystem. Recognizing the role of healthcare professionals as both consumers and contributors to AI training data, this article advocates for a proactive approach in understanding and shaping the data that underpins AI systems, emphasizing the need for informed engagement to maximize the benefits of AI while mitigating the risks.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"1400732\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665297/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1400732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1400732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

为了应对人工智能(AI)在医疗保健领域日益重要的意义,人们越来越关注人工智能构成的潜在威胁,包括总统行政命令创建人工智能安全研究所。虽然人们对人工智能对网络安全和关键基础设施构成的传统风险给予了很多关注,但在这里,我们概述了人工智能对医学界的一些独特挑战。除了对影响患者护理的审查算法的明显担忧之外,还有一些微妙但同样重要的事情需要考虑:人工智能对其自身完整性和更广泛的医疗信息生态系统构成的潜在危害。认识到医疗保健专业人员既是人工智能培训数据的消费者,也是贡献者,本文提倡采取积极主动的方法来理解和塑造支撑人工智能系统的数据,强调需要知情参与,以最大限度地发挥人工智能的好处,同时降低风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Navigating the unseen peril: safeguarding medical imaging in the age of AI.

In response to the increasing significance of artificial intelligence (AI) in healthcare, there has been increased attention - including a Presidential executive order to create an AI Safety Institute - to the potential threats posed by AI. While much attention has been given to the conventional risks AI poses to cybersecurity, and critical infrastructure, here we provide an overview of some unique challenges of AI for the medical community. Above and beyond obvious concerns about vetting algorithms that impact patient care, there are additional subtle yet equally important things to consider: the potential harm AI poses to its own integrity and the broader medical information ecosystem. Recognizing the role of healthcare professionals as both consumers and contributors to AI training data, this article advocates for a proactive approach in understanding and shaping the data that underpins AI systems, emphasizing the need for informed engagement to maximize the benefits of AI while mitigating the risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Examining the integration of artificial intelligence in supply chain management from Industry 4.0 to 6.0: a systematic literature review. The technology acceptance model and adopter type analysis in the context of artificial intelligence. An analysis of artificial intelligence automation in digital music streaming platforms for improving consumer subscription responses: a review. Prediction of outpatient rehabilitation patient preferences and optimization of graded diagnosis and treatment based on XGBoost machine learning algorithm. SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1