β-细丁酮通过Fas/FasL信号轴调控小胶质细胞极化,减轻脑外伤引起的神经损伤。

IF 3.4 3区 生物学 Q3 CELL BIOLOGY Human Cell Pub Date : 2024-12-24 DOI:10.1007/s13577-024-01161-z
Mingyue Xia, Min Yi, Chunyuan Guo, Yeli Xie, Wenting Yu, Dongsheng Wang, Xingping Dai
{"title":"β-细丁酮通过Fas/FasL信号轴调控小胶质细胞极化,减轻脑外伤引起的神经损伤。","authors":"Mingyue Xia, Min Yi, Chunyuan Guo, Yeli Xie, Wenting Yu, Dongsheng Wang, Xingping Dai","doi":"10.1007/s13577-024-01161-z","DOIUrl":null,"url":null,"abstract":"<p><p>Acute injury and secondary injury caused by traumatic brain injury (TBI) seriously threaten the health of patients. The purpose of this study was to investigate the role of β-Asarone in TBI-induced neuroinflammation and injury. In this work, the effects of β-Asarone on nerve injury and neuronal apoptosis were investigated in mice with TBI by controlled cortical impingement. The results of this research implied that β-Asarone dose-dependently decreased the mNSS score, brain water content and neuronal apoptosis, but increased the levels of the axonal markers Nrp-1 and Tau in TBI mice. In addition, β-Asarone caused a decrease in the levels of Fas, FasL, and inflammatory factors in cerebrospinal fluid and serum of TBI mice. Therefore, β-Asarone inhibited neuroinflammation and promoted axon regeneration in TBI mice. Besides, β-Asarone treatment inhibited M1 phenotype polarization but promoted M2 phenotype polarization in microglia of TBI mice. Overexpression of Fas and FasL reversed the above effects of β-Asarone. Thus, β-Asarone regulated microglial M1/M2 polarization balance in TBI mice by suppressing Fas/FasL signaling axis. In conclusion, β-Asarone inhibited Fas/FasL signaling pathway to promote the M1/M2 polarization balance of microglia toward M2 polarization, thus alleviating TBI-induced nerve injury.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 1","pages":"33"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β-Asarone regulates microglia polarization to alleviate TBI-induced nerve damage via Fas/FasL signaling axis.\",\"authors\":\"Mingyue Xia, Min Yi, Chunyuan Guo, Yeli Xie, Wenting Yu, Dongsheng Wang, Xingping Dai\",\"doi\":\"10.1007/s13577-024-01161-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute injury and secondary injury caused by traumatic brain injury (TBI) seriously threaten the health of patients. The purpose of this study was to investigate the role of β-Asarone in TBI-induced neuroinflammation and injury. In this work, the effects of β-Asarone on nerve injury and neuronal apoptosis were investigated in mice with TBI by controlled cortical impingement. The results of this research implied that β-Asarone dose-dependently decreased the mNSS score, brain water content and neuronal apoptosis, but increased the levels of the axonal markers Nrp-1 and Tau in TBI mice. In addition, β-Asarone caused a decrease in the levels of Fas, FasL, and inflammatory factors in cerebrospinal fluid and serum of TBI mice. Therefore, β-Asarone inhibited neuroinflammation and promoted axon regeneration in TBI mice. Besides, β-Asarone treatment inhibited M1 phenotype polarization but promoted M2 phenotype polarization in microglia of TBI mice. Overexpression of Fas and FasL reversed the above effects of β-Asarone. Thus, β-Asarone regulated microglial M1/M2 polarization balance in TBI mice by suppressing Fas/FasL signaling axis. In conclusion, β-Asarone inhibited Fas/FasL signaling pathway to promote the M1/M2 polarization balance of microglia toward M2 polarization, thus alleviating TBI-induced nerve injury.</p>\",\"PeriodicalId\":49194,\"journal\":{\"name\":\"Human Cell\",\"volume\":\"38 1\",\"pages\":\"33\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-024-01161-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01161-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

创伤性脑损伤(TBI)引起的急性损伤和继发性损伤严重威胁着患者的健康。本研究旨在探讨β-细辛酮在脑外伤引起的神经炎症和损伤中的作用。本实验研究了β-细辛酮对脑外伤小鼠神经损伤及神经元凋亡的影响。本研究结果提示,β-细辛酮剂量依赖性地降低了脑外伤小鼠mNSS评分、脑含水量和神经元凋亡,但增加了轴突标志物Nrp-1和Tau的水平。此外,β-细辛酮引起脑损伤小鼠脑脊液和血清中Fas、FasL和炎症因子水平降低。由此可见,β-细辛酮能抑制TBI小鼠神经炎症,促进轴突再生。此外,β-细辛酮对TBI小鼠小胶质细胞M1表型极化有抑制作用,而对M2表型极化有促进作用。Fas和FasL的过表达逆转了β-细辛酮的上述作用。由此可见,β-细丁酮通过抑制Fas/FasL信号轴调节TBI小鼠小胶质细胞M1/M2极化平衡。综上所述,β-细丁酮抑制Fas/FasL信号通路,促进小胶质细胞M1/M2向M2极化平衡,从而减轻tbi所致的神经损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
β-Asarone regulates microglia polarization to alleviate TBI-induced nerve damage via Fas/FasL signaling axis.

Acute injury and secondary injury caused by traumatic brain injury (TBI) seriously threaten the health of patients. The purpose of this study was to investigate the role of β-Asarone in TBI-induced neuroinflammation and injury. In this work, the effects of β-Asarone on nerve injury and neuronal apoptosis were investigated in mice with TBI by controlled cortical impingement. The results of this research implied that β-Asarone dose-dependently decreased the mNSS score, brain water content and neuronal apoptosis, but increased the levels of the axonal markers Nrp-1 and Tau in TBI mice. In addition, β-Asarone caused a decrease in the levels of Fas, FasL, and inflammatory factors in cerebrospinal fluid and serum of TBI mice. Therefore, β-Asarone inhibited neuroinflammation and promoted axon regeneration in TBI mice. Besides, β-Asarone treatment inhibited M1 phenotype polarization but promoted M2 phenotype polarization in microglia of TBI mice. Overexpression of Fas and FasL reversed the above effects of β-Asarone. Thus, β-Asarone regulated microglial M1/M2 polarization balance in TBI mice by suppressing Fas/FasL signaling axis. In conclusion, β-Asarone inhibited Fas/FasL signaling pathway to promote the M1/M2 polarization balance of microglia toward M2 polarization, thus alleviating TBI-induced nerve injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Cell
Human Cell CELL BIOLOGY-
CiteScore
5.90
自引率
2.30%
发文量
176
审稿时长
4.5 months
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
期刊最新文献
Nimodipine ameliorates subarachnoid hemorrhage-induced neuroinflammation and injury by protecting mitochondrial function and regulating autophagy. The multifaceted roles of aldolase A in cancer: glycolysis, cytoskeleton, translation and beyond. Inhibitory effects of the combination of rapamycin with gemcitabine plus paclitaxel on the growth of pancreatic cancer tumors. High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux. The dual role of PTPN22 in immune modulation and transplantation tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1