{"title":"PAI-1通过抑制VEGFR2/PI3K/AKT信号通路介导的F-actin重组促进人子宫内膜间质去细胞化。","authors":"Huishan Zhao, Juan Liu, Shuyuan Yin, Hongchu Bao","doi":"10.1096/fj.202401882R","DOIUrl":null,"url":null,"abstract":"<p>Decidualization of endometrial stromal cells is a prerequisite for successful embryo implantation and early pregnancy. Decidualization dysregulation results in implantation failure. In our previous study, we reported that PAI-1 is abnormally downregulated in the endometrial tissue samples of patients with recurrent implantation failure. This study will explore the dynamic expression changes of PAI-1 in the endometrium during the menstrual cycle and its molecular mechanism affecting endometrial decidualization. Our findings indicated that the abundance of PAI-1 increased in the mid-secretory phase and attached a peak in the decidual phase in the endometrium of women with regular menstrual cycles. In human endometrial stromal cells (HESCs), PAI-1 knockdown attenuated endometrial decidualization by upregulating VEGFR2/PI3K/AKT signaling pathway and impaired the F-actin reorganization. Furthermore, axitinib (a VEGFR2 inhibitor) was used to inhibit the VEGFR2 protein activity and the results suggested that it eliminated the effects of PAI-1 on PI3K/AKT signaling pathways and F-actin remodeling. In addition, the interaction between PAI-1 and KNG1 was confirmed by coimmunoprecipitation assay in HESCs. Altogether, PAI-1-KNG1 may enhance the decidualization of endometrium by inhibiting VEGFR2/PI3K/AKT signaling pathway-mediated F-actin reorganization in healthy females.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"38 24","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PAI-1 promotes human endometrial stromal decidualization via inhibiting VEGFR2/PI3K/AKT signaling pathway mediated F-actin reorganization\",\"authors\":\"Huishan Zhao, Juan Liu, Shuyuan Yin, Hongchu Bao\",\"doi\":\"10.1096/fj.202401882R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Decidualization of endometrial stromal cells is a prerequisite for successful embryo implantation and early pregnancy. Decidualization dysregulation results in implantation failure. In our previous study, we reported that PAI-1 is abnormally downregulated in the endometrial tissue samples of patients with recurrent implantation failure. This study will explore the dynamic expression changes of PAI-1 in the endometrium during the menstrual cycle and its molecular mechanism affecting endometrial decidualization. Our findings indicated that the abundance of PAI-1 increased in the mid-secretory phase and attached a peak in the decidual phase in the endometrium of women with regular menstrual cycles. In human endometrial stromal cells (HESCs), PAI-1 knockdown attenuated endometrial decidualization by upregulating VEGFR2/PI3K/AKT signaling pathway and impaired the F-actin reorganization. Furthermore, axitinib (a VEGFR2 inhibitor) was used to inhibit the VEGFR2 protein activity and the results suggested that it eliminated the effects of PAI-1 on PI3K/AKT signaling pathways and F-actin remodeling. In addition, the interaction between PAI-1 and KNG1 was confirmed by coimmunoprecipitation assay in HESCs. Altogether, PAI-1-KNG1 may enhance the decidualization of endometrium by inhibiting VEGFR2/PI3K/AKT signaling pathway-mediated F-actin reorganization in healthy females.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"38 24\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401882R\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401882R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PAI-1 promotes human endometrial stromal decidualization via inhibiting VEGFR2/PI3K/AKT signaling pathway mediated F-actin reorganization
Decidualization of endometrial stromal cells is a prerequisite for successful embryo implantation and early pregnancy. Decidualization dysregulation results in implantation failure. In our previous study, we reported that PAI-1 is abnormally downregulated in the endometrial tissue samples of patients with recurrent implantation failure. This study will explore the dynamic expression changes of PAI-1 in the endometrium during the menstrual cycle and its molecular mechanism affecting endometrial decidualization. Our findings indicated that the abundance of PAI-1 increased in the mid-secretory phase and attached a peak in the decidual phase in the endometrium of women with regular menstrual cycles. In human endometrial stromal cells (HESCs), PAI-1 knockdown attenuated endometrial decidualization by upregulating VEGFR2/PI3K/AKT signaling pathway and impaired the F-actin reorganization. Furthermore, axitinib (a VEGFR2 inhibitor) was used to inhibit the VEGFR2 protein activity and the results suggested that it eliminated the effects of PAI-1 on PI3K/AKT signaling pathways and F-actin remodeling. In addition, the interaction between PAI-1 and KNG1 was confirmed by coimmunoprecipitation assay in HESCs. Altogether, PAI-1-KNG1 may enhance the decidualization of endometrium by inhibiting VEGFR2/PI3K/AKT signaling pathway-mediated F-actin reorganization in healthy females.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.