Dongxue Yan, Siqi Bao, Zicheng Zhang, Jie Sun, Meng Zhou
{"title":"利用药物警戒数据来预测检查点抑制剂免疫疗法的人群规模毒性概况。","authors":"Dongxue Yan, Siqi Bao, Zicheng Zhang, Jie Sun, Meng Zhou","doi":"10.1038/s43588-024-00748-8","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibitor (ICI) therapies have made considerable advances in cancer immunotherapy, but the complex and diverse spectrum of ICI-induced toxicities poses substantial challenges to treatment outcomes and computational analysis. Here we introduce DySPred, a dynamic graph convolutional network-based deep learning framework, to map and predict the toxicity profiles of ICIs at the population level by leveraging large-scale real-world pharmacovigilance data. DySPred accurately predicts toxicity risks across diverse demographic cohorts and cancer types, demonstrating resilience in small-sample scenarios and revealing toxicity trends over time. Furthermore, DySPred consistently aligns the toxicity-safety profiles of small-molecule antineoplastic agents with their drug-induced transcriptional alterations. Our study provides a versatile methodology for population-level profiling of ICI-induced toxicities, enabling proactive toxicity monitoring and timely tailoring of treatment and intervention strategies in the advancement of cancer immunotherapy.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging pharmacovigilance data to predict population-scale toxicity profiles of checkpoint inhibitor immunotherapy.\",\"authors\":\"Dongxue Yan, Siqi Bao, Zicheng Zhang, Jie Sun, Meng Zhou\",\"doi\":\"10.1038/s43588-024-00748-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune checkpoint inhibitor (ICI) therapies have made considerable advances in cancer immunotherapy, but the complex and diverse spectrum of ICI-induced toxicities poses substantial challenges to treatment outcomes and computational analysis. Here we introduce DySPred, a dynamic graph convolutional network-based deep learning framework, to map and predict the toxicity profiles of ICIs at the population level by leveraging large-scale real-world pharmacovigilance data. DySPred accurately predicts toxicity risks across diverse demographic cohorts and cancer types, demonstrating resilience in small-sample scenarios and revealing toxicity trends over time. Furthermore, DySPred consistently aligns the toxicity-safety profiles of small-molecule antineoplastic agents with their drug-induced transcriptional alterations. Our study provides a versatile methodology for population-level profiling of ICI-induced toxicities, enabling proactive toxicity monitoring and timely tailoring of treatment and intervention strategies in the advancement of cancer immunotherapy.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-024-00748-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-024-00748-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Leveraging pharmacovigilance data to predict population-scale toxicity profiles of checkpoint inhibitor immunotherapy.
Immune checkpoint inhibitor (ICI) therapies have made considerable advances in cancer immunotherapy, but the complex and diverse spectrum of ICI-induced toxicities poses substantial challenges to treatment outcomes and computational analysis. Here we introduce DySPred, a dynamic graph convolutional network-based deep learning framework, to map and predict the toxicity profiles of ICIs at the population level by leveraging large-scale real-world pharmacovigilance data. DySPred accurately predicts toxicity risks across diverse demographic cohorts and cancer types, demonstrating resilience in small-sample scenarios and revealing toxicity trends over time. Furthermore, DySPred consistently aligns the toxicity-safety profiles of small-molecule antineoplastic agents with their drug-induced transcriptional alterations. Our study provides a versatile methodology for population-level profiling of ICI-induced toxicities, enabling proactive toxicity monitoring and timely tailoring of treatment and intervention strategies in the advancement of cancer immunotherapy.