Chao Xie;Linfeng Fei;Huanjie Tao;Yaocong Hu;Wei Zhou;Jiun Tian Hoe;Weipeng Hu;Yap-Peng Tan
{"title":"残差商学习的零参考微光图像增强","authors":"Chao Xie;Linfeng Fei;Huanjie Tao;Yaocong Hu;Wei Zhou;Jiun Tian Hoe;Weipeng Hu;Yap-Peng Tan","doi":"10.1109/TIP.2024.3519997","DOIUrl":null,"url":null,"abstract":"Recently, neural networks have become the dominant approach to low-light image enhancement (LLIE), with at least one-third of them adopting a Retinex-related architecture. However, through in-depth analysis, we contend that this most widely accepted LLIE structure is suboptimal, particularly when addressing the non-uniform illumination commonly observed in natural images. In this paper, we present a novel variant learning framework, termed residual quotient learning, to substantially alleviate this issue. Instead of following the existing Retinex-related decomposition-enhancement-reconstruction process, our basic idea is to explicitly reformulate the light enhancement task as adaptively predicting the latent quotient with reference to the original low-light input using a residual learning fashion. By leveraging the proposed residual quotient learning, we develop a lightweight yet effective network called ResQ-Net. This network features enhanced non-uniform illumination modeling capabilities, making it more suitable for real-world LLIE tasks. Moreover, due to its well-designed structure and reference-free loss function, ResQ-Net is flexible in training as it allows for zero-reference optimization, which further enhances the generalization and adaptability of our entire framework. Extensive experiments on various benchmark datasets demonstrate the merits and effectiveness of the proposed residual quotient learning, and our trained ResQ-Net outperforms state-of-the-art methods both qualitatively and quantitatively. Furthermore, a practical application in dark face detection is explored, and the preliminary results confirm the potential and feasibility of our method in real-world scenarios.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"365-378"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual Quotient Learning for Zero-Reference Low-Light Image Enhancement\",\"authors\":\"Chao Xie;Linfeng Fei;Huanjie Tao;Yaocong Hu;Wei Zhou;Jiun Tian Hoe;Weipeng Hu;Yap-Peng Tan\",\"doi\":\"10.1109/TIP.2024.3519997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, neural networks have become the dominant approach to low-light image enhancement (LLIE), with at least one-third of them adopting a Retinex-related architecture. However, through in-depth analysis, we contend that this most widely accepted LLIE structure is suboptimal, particularly when addressing the non-uniform illumination commonly observed in natural images. In this paper, we present a novel variant learning framework, termed residual quotient learning, to substantially alleviate this issue. Instead of following the existing Retinex-related decomposition-enhancement-reconstruction process, our basic idea is to explicitly reformulate the light enhancement task as adaptively predicting the latent quotient with reference to the original low-light input using a residual learning fashion. By leveraging the proposed residual quotient learning, we develop a lightweight yet effective network called ResQ-Net. This network features enhanced non-uniform illumination modeling capabilities, making it more suitable for real-world LLIE tasks. Moreover, due to its well-designed structure and reference-free loss function, ResQ-Net is flexible in training as it allows for zero-reference optimization, which further enhances the generalization and adaptability of our entire framework. Extensive experiments on various benchmark datasets demonstrate the merits and effectiveness of the proposed residual quotient learning, and our trained ResQ-Net outperforms state-of-the-art methods both qualitatively and quantitatively. Furthermore, a practical application in dark face detection is explored, and the preliminary results confirm the potential and feasibility of our method in real-world scenarios.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"365-378\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10815017/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10815017/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Residual Quotient Learning for Zero-Reference Low-Light Image Enhancement
Recently, neural networks have become the dominant approach to low-light image enhancement (LLIE), with at least one-third of them adopting a Retinex-related architecture. However, through in-depth analysis, we contend that this most widely accepted LLIE structure is suboptimal, particularly when addressing the non-uniform illumination commonly observed in natural images. In this paper, we present a novel variant learning framework, termed residual quotient learning, to substantially alleviate this issue. Instead of following the existing Retinex-related decomposition-enhancement-reconstruction process, our basic idea is to explicitly reformulate the light enhancement task as adaptively predicting the latent quotient with reference to the original low-light input using a residual learning fashion. By leveraging the proposed residual quotient learning, we develop a lightweight yet effective network called ResQ-Net. This network features enhanced non-uniform illumination modeling capabilities, making it more suitable for real-world LLIE tasks. Moreover, due to its well-designed structure and reference-free loss function, ResQ-Net is flexible in training as it allows for zero-reference optimization, which further enhances the generalization and adaptability of our entire framework. Extensive experiments on various benchmark datasets demonstrate the merits and effectiveness of the proposed residual quotient learning, and our trained ResQ-Net outperforms state-of-the-art methods both qualitatively and quantitatively. Furthermore, a practical application in dark face detection is explored, and the preliminary results confirm the potential and feasibility of our method in real-world scenarios.