Tian Gao, Jibin Li, Tianyi Cheng, Xingguo Wang, Mengqing Wang, Zhiyang Xu, Yang Mu, Xianli He, Jinliang Xing, Shujuan Liu
{"title":"卵巢癌来源的TGF-β1通过激活SMAD3/TRIB3通路诱导癌症相关脂肪细胞形成,建立转移前生态位。","authors":"Tian Gao, Jibin Li, Tianyi Cheng, Xingguo Wang, Mengqing Wang, Zhiyang Xu, Yang Mu, Xianli He, Jinliang Xing, Shujuan Liu","doi":"10.1038/s41419-024-07311-3","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer (OC) is prone to adipose tissue metastasis. However, the underlying molecular mechanisms remain elusive. Here, we observed that omental adipocytes were induced into cancer-associated adipocytes (CAAs) by OC-derived TGF-β1 to establish a pre-metastatic niche (PMN) through collagen and fibronectin secretion. Mechanistically, OC-derived TGF-β1 binds to adipocyte membrane receptors and thus activates intracellular signaling by SMAD3 phosphorylation. The activation of TGF-β1/SMAD3 signaling pathway dedifferentiates adipocytes into CAAs by upregulating Tribbles homolog 3 (TRIB3), which suppresses the phosphorylation of CEBPβ. Additionally, CAAs secrete collagen I, collagen VI, and fibronectin to remodel the extracellular matrix and promote the adhesion of OC cells. Pharmacological inhibition of the TGF-β1/SMAD3 pathway significantly inhibits CAAs and PMN formation, thereby reducing the OC metastatic burden. Our findings indicate that the formation of CAAs and PMN in adipose tissues facilitates OC cell implantation and blocking the TGF-β1/SMAD3 signaling pathway could prevent OC omental metastasis.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"930"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668853/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ovarian cancer-derived TGF-β1 induces cancer-associated adipocytes formation by activating SMAD3/TRIB3 pathway to establish pre-metastatic niche.\",\"authors\":\"Tian Gao, Jibin Li, Tianyi Cheng, Xingguo Wang, Mengqing Wang, Zhiyang Xu, Yang Mu, Xianli He, Jinliang Xing, Shujuan Liu\",\"doi\":\"10.1038/s41419-024-07311-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ovarian cancer (OC) is prone to adipose tissue metastasis. However, the underlying molecular mechanisms remain elusive. Here, we observed that omental adipocytes were induced into cancer-associated adipocytes (CAAs) by OC-derived TGF-β1 to establish a pre-metastatic niche (PMN) through collagen and fibronectin secretion. Mechanistically, OC-derived TGF-β1 binds to adipocyte membrane receptors and thus activates intracellular signaling by SMAD3 phosphorylation. The activation of TGF-β1/SMAD3 signaling pathway dedifferentiates adipocytes into CAAs by upregulating Tribbles homolog 3 (TRIB3), which suppresses the phosphorylation of CEBPβ. Additionally, CAAs secrete collagen I, collagen VI, and fibronectin to remodel the extracellular matrix and promote the adhesion of OC cells. Pharmacological inhibition of the TGF-β1/SMAD3 pathway significantly inhibits CAAs and PMN formation, thereby reducing the OC metastatic burden. Our findings indicate that the formation of CAAs and PMN in adipose tissues facilitates OC cell implantation and blocking the TGF-β1/SMAD3 signaling pathway could prevent OC omental metastasis.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"15 12\",\"pages\":\"930\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668853/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-024-07311-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07311-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ovarian cancer-derived TGF-β1 induces cancer-associated adipocytes formation by activating SMAD3/TRIB3 pathway to establish pre-metastatic niche.
Ovarian cancer (OC) is prone to adipose tissue metastasis. However, the underlying molecular mechanisms remain elusive. Here, we observed that omental adipocytes were induced into cancer-associated adipocytes (CAAs) by OC-derived TGF-β1 to establish a pre-metastatic niche (PMN) through collagen and fibronectin secretion. Mechanistically, OC-derived TGF-β1 binds to adipocyte membrane receptors and thus activates intracellular signaling by SMAD3 phosphorylation. The activation of TGF-β1/SMAD3 signaling pathway dedifferentiates adipocytes into CAAs by upregulating Tribbles homolog 3 (TRIB3), which suppresses the phosphorylation of CEBPβ. Additionally, CAAs secrete collagen I, collagen VI, and fibronectin to remodel the extracellular matrix and promote the adhesion of OC cells. Pharmacological inhibition of the TGF-β1/SMAD3 pathway significantly inhibits CAAs and PMN formation, thereby reducing the OC metastatic burden. Our findings indicate that the formation of CAAs and PMN in adipose tissues facilitates OC cell implantation and blocking the TGF-β1/SMAD3 signaling pathway could prevent OC omental metastasis.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism