{"title":"砷扰乱了神经退行性变和叶酸逆转神经发生的小脑平衡。","authors":"Ankur Das, Ankan Mitra, Swaimanti Sarkar, Sourav Ghosh, Debasish Bandyopadhyay, Sreya Chattopadhyay","doi":"10.1007/s10495-024-02054-0","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic-mediated neurodegenerative disorders affect millions of individuals globally, but the specific impact of environmental arsenic on adult cerebellar degeneration and neurogenesis is incompletely understood. Of particular concern is arsenic-induced apoptosis-driven neurodegeneration. Our major objective was to investigate the molecular signaling intricacies associated with arsenic-induced death of cerebellar neurons and to propose folic acid as a possible intervention. Swiss albino mice were treated with sodium arsenite (orally: 0.05 mg/L) and folic acid (orally:10 mg/kg) for 28 days. We observed that arsenic caused noticeable cell loss with morphological alterations in cerebellum, which was remarkably restored by folic acid. Arsenic-induced morphological alterations consequently perturbed transcriptional activities of neural stem cell factors-SOX2 and KLF9, which resulted in the suppression of pro-neurogenic mediators NeuroD1, Neurogenin2, calbindin and NeuN. Interestingly, folic acid reversed the expression of these critical pro-neurogenic mediators to mitigate these degenerative changes to promote neurogenesis. Delving deep, we found that folic acid rescued arsenic-exposed cerebellum from severe oxidative and pro-inflammatory insults by increasing antioxidants like SOD, Catalase, GSH, upregulating Nrf2 and downregulating M1 macrophages, JNK, NF-κB, and STAT3 activities. For the first time, we are reporting that arsenic induced a G1/S cell cycle arrest and triggered apoptosis in mouse cerebellum by activating the p53-p21 axis, downregulating CDKs and instigated p21-mediated suppression of SOX2 transcriptional activity. Folic acid abated such alterations by modulating the p53/p21/SOX2 axis. Collectively, the anti-apoptotic and pro-neurogenic effects of folic acid present it as a promising therapeutic candidate, warranting further research into its efficacy against metal-induced neurodegenerative disorders.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arsenic unsettles the cerebellar balance between neurodegeneration and neurogenesis: reversal by folic acid.\",\"authors\":\"Ankur Das, Ankan Mitra, Swaimanti Sarkar, Sourav Ghosh, Debasish Bandyopadhyay, Sreya Chattopadhyay\",\"doi\":\"10.1007/s10495-024-02054-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arsenic-mediated neurodegenerative disorders affect millions of individuals globally, but the specific impact of environmental arsenic on adult cerebellar degeneration and neurogenesis is incompletely understood. Of particular concern is arsenic-induced apoptosis-driven neurodegeneration. Our major objective was to investigate the molecular signaling intricacies associated with arsenic-induced death of cerebellar neurons and to propose folic acid as a possible intervention. Swiss albino mice were treated with sodium arsenite (orally: 0.05 mg/L) and folic acid (orally:10 mg/kg) for 28 days. We observed that arsenic caused noticeable cell loss with morphological alterations in cerebellum, which was remarkably restored by folic acid. Arsenic-induced morphological alterations consequently perturbed transcriptional activities of neural stem cell factors-SOX2 and KLF9, which resulted in the suppression of pro-neurogenic mediators NeuroD1, Neurogenin2, calbindin and NeuN. Interestingly, folic acid reversed the expression of these critical pro-neurogenic mediators to mitigate these degenerative changes to promote neurogenesis. Delving deep, we found that folic acid rescued arsenic-exposed cerebellum from severe oxidative and pro-inflammatory insults by increasing antioxidants like SOD, Catalase, GSH, upregulating Nrf2 and downregulating M1 macrophages, JNK, NF-κB, and STAT3 activities. For the first time, we are reporting that arsenic induced a G1/S cell cycle arrest and triggered apoptosis in mouse cerebellum by activating the p53-p21 axis, downregulating CDKs and instigated p21-mediated suppression of SOX2 transcriptional activity. Folic acid abated such alterations by modulating the p53/p21/SOX2 axis. Collectively, the anti-apoptotic and pro-neurogenic effects of folic acid present it as a promising therapeutic candidate, warranting further research into its efficacy against metal-induced neurodegenerative disorders.</p>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10495-024-02054-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-024-02054-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Arsenic unsettles the cerebellar balance between neurodegeneration and neurogenesis: reversal by folic acid.
Arsenic-mediated neurodegenerative disorders affect millions of individuals globally, but the specific impact of environmental arsenic on adult cerebellar degeneration and neurogenesis is incompletely understood. Of particular concern is arsenic-induced apoptosis-driven neurodegeneration. Our major objective was to investigate the molecular signaling intricacies associated with arsenic-induced death of cerebellar neurons and to propose folic acid as a possible intervention. Swiss albino mice were treated with sodium arsenite (orally: 0.05 mg/L) and folic acid (orally:10 mg/kg) for 28 days. We observed that arsenic caused noticeable cell loss with morphological alterations in cerebellum, which was remarkably restored by folic acid. Arsenic-induced morphological alterations consequently perturbed transcriptional activities of neural stem cell factors-SOX2 and KLF9, which resulted in the suppression of pro-neurogenic mediators NeuroD1, Neurogenin2, calbindin and NeuN. Interestingly, folic acid reversed the expression of these critical pro-neurogenic mediators to mitigate these degenerative changes to promote neurogenesis. Delving deep, we found that folic acid rescued arsenic-exposed cerebellum from severe oxidative and pro-inflammatory insults by increasing antioxidants like SOD, Catalase, GSH, upregulating Nrf2 and downregulating M1 macrophages, JNK, NF-κB, and STAT3 activities. For the first time, we are reporting that arsenic induced a G1/S cell cycle arrest and triggered apoptosis in mouse cerebellum by activating the p53-p21 axis, downregulating CDKs and instigated p21-mediated suppression of SOX2 transcriptional activity. Folic acid abated such alterations by modulating the p53/p21/SOX2 axis. Collectively, the anti-apoptotic and pro-neurogenic effects of folic acid present it as a promising therapeutic candidate, warranting further research into its efficacy against metal-induced neurodegenerative disorders.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.