在分泌的天冬氨酸蛋白酶和唾液蛋白酶存在下,氨基酸取代对组蛋白5蛋白水解稳定性的影响。

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Science Pub Date : 2025-01-01 DOI:10.1002/pro.70011
Wright K Makambi, Victoria L Chiu, Lydia Kasper, Bernhard Hube, Amy J Karlsson
{"title":"在分泌的天冬氨酸蛋白酶和唾液蛋白酶存在下,氨基酸取代对组蛋白5蛋白水解稳定性的影响。","authors":"Wright K Makambi, Victoria L Chiu, Lydia Kasper, Bernhard Hube, Amy J Karlsson","doi":"10.1002/pro.70011","DOIUrl":null,"url":null,"abstract":"<p><p>Histatin 5 (Hst5) is a 24-amino-acid peptide naturally present in human saliva that has been proposed as a potential antifungal therapeutic. However, Hst5 is susceptible to degradation by secreted aspartyl proteases (Saps) produced by Candida albicans, which could limit its efficacy as a therapeutic. To better understand the role of the lysine residues of Hst5 in proteolysis by C. albicans Saps (Sap1, Sap2, Sap3, Sap5, Sap6, Sap9, and Sap10), we studied variants of Hst5 with substitutions to leucine or arginine at the lysine residues (K5, K11, K13, and K17). Sap5, Sap6, and Sap10 did not degrade Hst5 or the variants. However, we observed degradation of the peptides by Sap1, Sap2, Sap3, and Sap9, and the degradation depended on the site of substitution and the substituent residue. Some modifications, such as K11L and K13L, were particularly susceptible to proteolysis by Sap1, Sap2, Sap3, and Sap9. In contrast, the K17L modification substantially increased the stability and antifungal activity of Hst5 in the presence of Saps. We used mass spectrometry to characterize the proteolysis products, which allowed us to identify fragments likely to have maintained or lost antifungal activity. We also evaluated the proteolytic stability of the Hst5 variants in saliva. Both K17L and K5R showed improved stability; however, the enhancements were modest, suggesting that further engineering is required to achieve significant improvements. Our approach demonstrates the potential of simple, rational substitutions to enhance peptide efficacy and proteolytic stability, providing a promising strategy for improving the properties of antifungal peptides.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 1","pages":"e70011"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669118/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of amino acid substitutions on proteolytic stability of histatin 5 in the presence of secreted aspartyl proteases and salivary proteases.\",\"authors\":\"Wright K Makambi, Victoria L Chiu, Lydia Kasper, Bernhard Hube, Amy J Karlsson\",\"doi\":\"10.1002/pro.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histatin 5 (Hst5) is a 24-amino-acid peptide naturally present in human saliva that has been proposed as a potential antifungal therapeutic. However, Hst5 is susceptible to degradation by secreted aspartyl proteases (Saps) produced by Candida albicans, which could limit its efficacy as a therapeutic. To better understand the role of the lysine residues of Hst5 in proteolysis by C. albicans Saps (Sap1, Sap2, Sap3, Sap5, Sap6, Sap9, and Sap10), we studied variants of Hst5 with substitutions to leucine or arginine at the lysine residues (K5, K11, K13, and K17). Sap5, Sap6, and Sap10 did not degrade Hst5 or the variants. However, we observed degradation of the peptides by Sap1, Sap2, Sap3, and Sap9, and the degradation depended on the site of substitution and the substituent residue. Some modifications, such as K11L and K13L, were particularly susceptible to proteolysis by Sap1, Sap2, Sap3, and Sap9. In contrast, the K17L modification substantially increased the stability and antifungal activity of Hst5 in the presence of Saps. We used mass spectrometry to characterize the proteolysis products, which allowed us to identify fragments likely to have maintained or lost antifungal activity. We also evaluated the proteolytic stability of the Hst5 variants in saliva. Both K17L and K5R showed improved stability; however, the enhancements were modest, suggesting that further engineering is required to achieve significant improvements. Our approach demonstrates the potential of simple, rational substitutions to enhance peptide efficacy and proteolytic stability, providing a promising strategy for improving the properties of antifungal peptides.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 1\",\"pages\":\"e70011\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669118/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70011\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

组蛋白5 (Hst5)是一种天然存在于人类唾液中的由24个氨基酸组成的肽,已被认为是一种潜在的抗真菌治疗药物。然而,Hst5容易被白色念珠菌分泌的天冬氨酸蛋白酶(Saps)降解,这可能限制了其作为治疗药物的功效。为了更好地了解Hst5的赖氨酸残基在白念菌蛋白酶(Sap1、Sap2、Sap3、Sap5、Sap6、Sap9和Sap10)水解蛋白中的作用,我们研究了在赖氨酸残基(K5、K11、K13和K17)上取代亮氨酸或精氨酸的Hst5变体。Sap5、Sap6和Sap10不能降解Hst5或其变体。然而,我们观察到这些肽被Sap1、Sap2、Sap3和Sap9降解,降解取决于取代位点和取代基残基。一些修饰,如K11L和K13L,特别容易被Sap1、Sap2、Sap3和Sap9水解。相比之下,K17L的修饰显著提高了Saps存在下Hst5的稳定性和抗真菌活性。我们使用质谱法来表征蛋白质水解产物,这使我们能够识别可能保持或失去抗真菌活性的片段。我们还评估了Hst5变异在唾液中的蛋白水解稳定性。K17L和K5R均表现出较好的稳定性;然而,这些改进是适度的,这表明需要进一步的工程来实现显著的改进。我们的方法证明了简单,合理的替代可以提高肽的功效和蛋白水解稳定性,为改善抗真菌肽的特性提供了一个有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of amino acid substitutions on proteolytic stability of histatin 5 in the presence of secreted aspartyl proteases and salivary proteases.

Histatin 5 (Hst5) is a 24-amino-acid peptide naturally present in human saliva that has been proposed as a potential antifungal therapeutic. However, Hst5 is susceptible to degradation by secreted aspartyl proteases (Saps) produced by Candida albicans, which could limit its efficacy as a therapeutic. To better understand the role of the lysine residues of Hst5 in proteolysis by C. albicans Saps (Sap1, Sap2, Sap3, Sap5, Sap6, Sap9, and Sap10), we studied variants of Hst5 with substitutions to leucine or arginine at the lysine residues (K5, K11, K13, and K17). Sap5, Sap6, and Sap10 did not degrade Hst5 or the variants. However, we observed degradation of the peptides by Sap1, Sap2, Sap3, and Sap9, and the degradation depended on the site of substitution and the substituent residue. Some modifications, such as K11L and K13L, were particularly susceptible to proteolysis by Sap1, Sap2, Sap3, and Sap9. In contrast, the K17L modification substantially increased the stability and antifungal activity of Hst5 in the presence of Saps. We used mass spectrometry to characterize the proteolysis products, which allowed us to identify fragments likely to have maintained or lost antifungal activity. We also evaluated the proteolytic stability of the Hst5 variants in saliva. Both K17L and K5R showed improved stability; however, the enhancements were modest, suggesting that further engineering is required to achieve significant improvements. Our approach demonstrates the potential of simple, rational substitutions to enhance peptide efficacy and proteolytic stability, providing a promising strategy for improving the properties of antifungal peptides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
期刊最新文献
A functional helix shuffled variant of the B domain of Staphylococcus aureus. AFFIPred: AlphaFold2 structure-based Functional Impact Prediction of missense variations. AggNet: Advancing protein aggregation analysis through deep learning and protein language model. Allosteric modulation of NF1 GAP: Differential distributions of catalytically competent populations in loss-of-function and gain-of-function mutants. Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1