径向基函数网络采用Lambert-Kaniadakis[公式省略]函数

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED Communications in Nonlinear Science and Numerical Simulation Pub Date : 2024-12-17 DOI:10.1016/j.cnsns.2024.108539
Hitalo Joseferson Batista Nascimento , Paulo Regis Menezes Sousa , José Leonardo Esteves da Silva
{"title":"径向基函数网络采用Lambert-Kaniadakis[公式省略]函数","authors":"Hitalo Joseferson Batista Nascimento ,&nbsp;Paulo Regis Menezes Sousa ,&nbsp;José Leonardo Esteves da Silva","doi":"10.1016/j.cnsns.2024.108539","DOIUrl":null,"url":null,"abstract":"<div><div>In this work the authors present a new class of radial basis functions (RBF) using functions from the <span><math><mi>κ</mi></math></span>-generalized Kaniadakis thermostatistics and the Lambert–Kaniadakis <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span> function, a recent generalization of the Lambert <span><math><mi>W</mi></math></span> function using the <span><math><mi>κ</mi></math></span>-exponential. Such functions are used to build neural networks of radial basis functions (RBFN). Two applications of these new RBFNs are described: In the first, we use such networks with <span><math><mrow><mi>κ</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span> to train data that describe a time serie with additive noise. Second, we use the same RBFNs to numerically calculate the solution of Fredholm linear integral equations of the second kind.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"142 ","pages":"Article 108539"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radial basis function network using Lambert–Kaniadakis Wκ function\",\"authors\":\"Hitalo Joseferson Batista Nascimento ,&nbsp;Paulo Regis Menezes Sousa ,&nbsp;José Leonardo Esteves da Silva\",\"doi\":\"10.1016/j.cnsns.2024.108539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work the authors present a new class of radial basis functions (RBF) using functions from the <span><math><mi>κ</mi></math></span>-generalized Kaniadakis thermostatistics and the Lambert–Kaniadakis <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span> function, a recent generalization of the Lambert <span><math><mi>W</mi></math></span> function using the <span><math><mi>κ</mi></math></span>-exponential. Such functions are used to build neural networks of radial basis functions (RBFN). Two applications of these new RBFNs are described: In the first, we use such networks with <span><math><mrow><mi>κ</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span> to train data that describe a time serie with additive noise. Second, we use the same RBFNs to numerically calculate the solution of Fredholm linear integral equations of the second kind.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"142 \",\"pages\":\"Article 108539\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042400724X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042400724X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文利用κ-广义Kaniadakis热统计函数和Lambert - Kaniadakis Wκ函数提出了一类新的径向基函数(RBF)。Lambert - Kaniadakis Wκ函数是Lambert W函数的最新推广,使用κ-指数。这些函数被用来构建径向基函数(RBFN)神经网络。描述了这些新的rbfn的两种应用:首先,我们使用这种κ=1/3的网络来训练描述具有加性噪声的时间序列的数据。其次,我们使用相同的rbfn数值计算了第二类Fredholm线性积分方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radial basis function network using Lambert–Kaniadakis Wκ function
In this work the authors present a new class of radial basis functions (RBF) using functions from the κ-generalized Kaniadakis thermostatistics and the Lambert–Kaniadakis Wκ function, a recent generalization of the Lambert W function using the κ-exponential. Such functions are used to build neural networks of radial basis functions (RBFN). Two applications of these new RBFNs are described: In the first, we use such networks with κ=1/3 to train data that describe a time serie with additive noise. Second, we use the same RBFNs to numerically calculate the solution of Fredholm linear integral equations of the second kind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
期刊最新文献
Regularity and strong convergence of numerical approximations for stochastic wave equations with multiplicative fractional Brownian motions Finite-time contractive stabilization for fractional-order switched systems via event-triggered impulse control Modified hat functions for constrained fractional optimal control problems with ψ-Caputo derivative Traveling waves in a generalized Bogoyavlenskii coupled system under perturbation of distributed delay and weak dissipation Two lower boundedness-preservity auxiliary variable methods for a phase-field model of 3D narrow volume reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1