内在肌肉干细胞功能障碍导致mdx小鼠再生受损

IF 8.9 1区 医学 Journal of Cachexia, Sarcopenia and Muscle Pub Date : 2024-12-26 DOI:10.1002/jcsm.13682
Marie E. Esper, Caroline E. Brun, Alexander Y. T. Lin, Peter Feige, Marie J. Catenacci, Marie‐Claude Sincennes, Morten Ritso, Michael A. Rudnicki
{"title":"内在肌肉干细胞功能障碍导致mdx小鼠再生受损","authors":"Marie E. Esper, Caroline E. Brun, Alexander Y. T. Lin, Peter Feige, Marie J. Catenacci, Marie‐Claude Sincennes, Morten Ritso, Michael A. Rudnicki","doi":"10.1002/jcsm.13682","DOIUrl":null,"url":null,"abstract":"BackgroundDuchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin‐deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.MethodsUsing the <jats:italic>mdx</jats:italic> mouse model of DMD, we performed an in‐depth characterization of disease progression and MuSC function in dystrophin‐deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays. We examined the architectural and functional changes in <jats:italic>mdx</jats:italic> skeletal muscle from 13 and 52 weeks of age and following acute cardiotoxin (CTX) injury. We also studied MuSC dynamics and function under homeostatic conditions, during regeneration post‐acute injury, and following engraftment using a combination of histological and transcriptomic analyses.ResultsDystrophin‐deficient skeletal muscle undergoes progressive changes with age and delayed regeneration in response to acute injury. Muscle hypertrophy, deposition of collagen and an increase in small myofibres occur with age in the <jats:italic>tibialis anterior</jats:italic> (TA) and diaphragm muscles in <jats:italic>mdx</jats:italic> mice. Dystrophic <jats:italic>mdx</jats:italic> mouse TA muscles become hypertrophic with age, whereas diaphragm atrophy is evident in 1‐year‐old <jats:italic>mdx</jats:italic> mice. Maximum tetanic force is comparable between genotypes in the TA, but maximum specific force is reduced by up to 38% between 13 and 52 weeks in the <jats:italic>mdx</jats:italic> mouse. Following acute injury, myofibre hyperplasia and hypotrophy and delayed recovery of maximum tetanic force occur in the <jats:italic>mdx</jats:italic> TA. We also find defective MuSC polarity and reduced numbers of myocytes in <jats:italic>mdx</jats:italic> muscle following acute injury. We observed a 50% and 30% decrease in PAX7<jats:sup>+</jats:sup> and MYOG<jats:sup>+</jats:sup> cells, respectively, at 5 days post CTX injury (5 dpi) in the <jats:italic>mdx</jats:italic> TA. A similar decrease in <jats:italic>mdx</jats:italic> progenitor cell proportion is observed by single cell RNA sequencing of myogenic cells at 5 dpi. The global expression of commitment‐related genes is also reduced at 5 dpi. We find a 46% reduction in polarized PARD3 in <jats:italic>mdx</jats:italic> MuSCs. Finally, <jats:italic>mdx</jats:italic> MuSCs exhibit elevated PAX7<jats:sup>+</jats:sup> cell engraftment with significantly fewer donor‐derived myonuclei in regenerated myofibres.ConclusionsOur study provides evidence that dystrophin deficiency in MuSCs and myofibres together contributes to progression of DMD. Ongoing muscle damage stimulates MuSC activation; however, aberrant intrinsic MuSC polarity and stem cell commitment deficits due to the loss of dystrophin impair muscle regeneration. Our study provides in vivo validation that dystrophin‐deficient MuSCs undergo fewer asymmetric cell divisions, instead favouring symmetric expansion.","PeriodicalId":186,"journal":{"name":"Journal of Cachexia, Sarcopenia and Muscle","volume":"83 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic Muscle Stem Cell Dysfunction Contributes to Impaired Regeneration in the mdx Mouse\",\"authors\":\"Marie E. Esper, Caroline E. Brun, Alexander Y. T. Lin, Peter Feige, Marie J. Catenacci, Marie‐Claude Sincennes, Morten Ritso, Michael A. Rudnicki\",\"doi\":\"10.1002/jcsm.13682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BackgroundDuchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin‐deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.MethodsUsing the <jats:italic>mdx</jats:italic> mouse model of DMD, we performed an in‐depth characterization of disease progression and MuSC function in dystrophin‐deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays. We examined the architectural and functional changes in <jats:italic>mdx</jats:italic> skeletal muscle from 13 and 52 weeks of age and following acute cardiotoxin (CTX) injury. We also studied MuSC dynamics and function under homeostatic conditions, during regeneration post‐acute injury, and following engraftment using a combination of histological and transcriptomic analyses.ResultsDystrophin‐deficient skeletal muscle undergoes progressive changes with age and delayed regeneration in response to acute injury. Muscle hypertrophy, deposition of collagen and an increase in small myofibres occur with age in the <jats:italic>tibialis anterior</jats:italic> (TA) and diaphragm muscles in <jats:italic>mdx</jats:italic> mice. Dystrophic <jats:italic>mdx</jats:italic> mouse TA muscles become hypertrophic with age, whereas diaphragm atrophy is evident in 1‐year‐old <jats:italic>mdx</jats:italic> mice. Maximum tetanic force is comparable between genotypes in the TA, but maximum specific force is reduced by up to 38% between 13 and 52 weeks in the <jats:italic>mdx</jats:italic> mouse. Following acute injury, myofibre hyperplasia and hypotrophy and delayed recovery of maximum tetanic force occur in the <jats:italic>mdx</jats:italic> TA. We also find defective MuSC polarity and reduced numbers of myocytes in <jats:italic>mdx</jats:italic> muscle following acute injury. We observed a 50% and 30% decrease in PAX7<jats:sup>+</jats:sup> and MYOG<jats:sup>+</jats:sup> cells, respectively, at 5 days post CTX injury (5 dpi) in the <jats:italic>mdx</jats:italic> TA. A similar decrease in <jats:italic>mdx</jats:italic> progenitor cell proportion is observed by single cell RNA sequencing of myogenic cells at 5 dpi. The global expression of commitment‐related genes is also reduced at 5 dpi. We find a 46% reduction in polarized PARD3 in <jats:italic>mdx</jats:italic> MuSCs. Finally, <jats:italic>mdx</jats:italic> MuSCs exhibit elevated PAX7<jats:sup>+</jats:sup> cell engraftment with significantly fewer donor‐derived myonuclei in regenerated myofibres.ConclusionsOur study provides evidence that dystrophin deficiency in MuSCs and myofibres together contributes to progression of DMD. Ongoing muscle damage stimulates MuSC activation; however, aberrant intrinsic MuSC polarity and stem cell commitment deficits due to the loss of dystrophin impair muscle regeneration. Our study provides in vivo validation that dystrophin‐deficient MuSCs undergo fewer asymmetric cell divisions, instead favouring symmetric expansion.\",\"PeriodicalId\":186,\"journal\":{\"name\":\"Journal of Cachexia, Sarcopenia and Muscle\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cachexia, Sarcopenia and Muscle\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jcsm.13682\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia, Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcsm.13682","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景杜氏肌营养不良症(DMD)是一种破坏性疾病,其特点是进行性肌肉萎缩,导致寿命缩短。方法我们利用 mdx DMD 小鼠模型,通过免疫组织学、等力测量、转录组分析和移植试验,对淀粉样蛋白缺陷骨骼肌的疾病进展和 MuSC 功能进行了深入研究。我们研究了mdx骨骼肌在13周龄和52周龄以及急性心脏毒素(CTX)损伤后的结构和功能变化。我们还使用组织学和转录组分析相结合的方法,研究了MuSC在平衡条件下、急性损伤后再生期间以及移植后的动态和功能。随着年龄的增长,mdx 小鼠的胫骨前肌(TA)和膈肌会出现肌肉肥大、胶原沉积和小肌纤维增加。萎缩性 mdx 小鼠的胫骨前肌(TA)和膈肌会随着年龄的增长而变得肥厚,而 1 岁的 mdx 小鼠则会出现明显的膈肌萎缩。不同基因型小鼠TA肌肉的最大张力相当,但在13至52周期间,mdx小鼠的最大比张力降低了38%。急性损伤后,mdx TA 的肌纤维增生和萎缩,以及最大肌张力恢复延迟。我们还发现,急性损伤后,mdx肌肉中的MuSC极性缺陷和肌细胞数量减少。我们观察到,在 CTX 损伤后 5 天(5 dpi),mdx TA 中 PAX7+ 和 MYOG+ 细胞分别减少了 50%和 30%。在 5 dpi 时,通过对肌原细胞进行单细胞 RNA 测序,我们也观察到 mdx 祖细胞比例出现了类似的下降。在 5 dpi 时,承诺相关基因的整体表达也有所减少。我们发现,mdx MuSCs 中极化的 PARD3 减少了 46%。最后,mdx MuSCs 表现出较高的 PAX7+ 细胞移植性,再生肌纤维中的供体衍生肌核明显减少。结论我们的研究提供了证据,证明 MuSCs 和肌纤维中的肌营养不良素缺乏共同导致了 DMD 的进展。持续的肌肉损伤会刺激间充质干细胞的活化;然而,由于肌营养不良蛋白的缺失,间充质干细胞固有极性的异常和干细胞承诺的缺失会损害肌肉再生。我们的研究在体内验证了缺乏肌营养不良蛋白的肌肉干细胞进行较少的非对称细胞分裂,而是倾向于对称性扩张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrinsic Muscle Stem Cell Dysfunction Contributes to Impaired Regeneration in the mdx Mouse
BackgroundDuchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin‐deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.MethodsUsing the mdx mouse model of DMD, we performed an in‐depth characterization of disease progression and MuSC function in dystrophin‐deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays. We examined the architectural and functional changes in mdx skeletal muscle from 13 and 52 weeks of age and following acute cardiotoxin (CTX) injury. We also studied MuSC dynamics and function under homeostatic conditions, during regeneration post‐acute injury, and following engraftment using a combination of histological and transcriptomic analyses.ResultsDystrophin‐deficient skeletal muscle undergoes progressive changes with age and delayed regeneration in response to acute injury. Muscle hypertrophy, deposition of collagen and an increase in small myofibres occur with age in the tibialis anterior (TA) and diaphragm muscles in mdx mice. Dystrophic mdx mouse TA muscles become hypertrophic with age, whereas diaphragm atrophy is evident in 1‐year‐old mdx mice. Maximum tetanic force is comparable between genotypes in the TA, but maximum specific force is reduced by up to 38% between 13 and 52 weeks in the mdx mouse. Following acute injury, myofibre hyperplasia and hypotrophy and delayed recovery of maximum tetanic force occur in the mdx TA. We also find defective MuSC polarity and reduced numbers of myocytes in mdx muscle following acute injury. We observed a 50% and 30% decrease in PAX7+ and MYOG+ cells, respectively, at 5 days post CTX injury (5 dpi) in the mdx TA. A similar decrease in mdx progenitor cell proportion is observed by single cell RNA sequencing of myogenic cells at 5 dpi. The global expression of commitment‐related genes is also reduced at 5 dpi. We find a 46% reduction in polarized PARD3 in mdx MuSCs. Finally, mdx MuSCs exhibit elevated PAX7+ cell engraftment with significantly fewer donor‐derived myonuclei in regenerated myofibres.ConclusionsOur study provides evidence that dystrophin deficiency in MuSCs and myofibres together contributes to progression of DMD. Ongoing muscle damage stimulates MuSC activation; however, aberrant intrinsic MuSC polarity and stem cell commitment deficits due to the loss of dystrophin impair muscle regeneration. Our study provides in vivo validation that dystrophin‐deficient MuSCs undergo fewer asymmetric cell divisions, instead favouring symmetric expansion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cachexia, Sarcopenia and Muscle
Journal of Cachexia, Sarcopenia and Muscle Medicine-Orthopedics and Sports Medicine
自引率
12.40%
发文量
0
期刊介绍: The Journal of Cachexia, Sarcopenia, and Muscle is a prestigious, peer-reviewed international publication committed to disseminating research and clinical insights pertaining to cachexia, sarcopenia, body composition, and the physiological and pathophysiological alterations occurring throughout the lifespan and in various illnesses across the spectrum of life sciences. This journal serves as a valuable resource for physicians, biochemists, biologists, dieticians, pharmacologists, and students alike.
期刊最新文献
Anabolic Sensitivity in Healthy, Lean, Older Men Is Associated With Higher Expression of Amino Acid Sensors and mTORC1 Activators Compared to Young. Comment on 'Systematic Druggable Genome-Wide Mendelian Randomization Identifies Therapeutic Targets for Sarcopenia' by Yin Et Al. Concordance of Freehand 3D Ultrasound Muscle Measurements With Sarcopenia Parameters in a Geriatric Rehabilitation Ward. Assessing Association Between Circulating Bilirubin Levels and the Risk of Frailty: An Observational and Mendelian Randomization Study. The Stimulator of Interferon Genes Deficiency Attenuates Diabetic Myopathy Through Inhibiting NLRP3-Mediated Pyroptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1