{"title":"包含单个和双超大质量黑洞的星系核中准周期爆发的形成速率","authors":"Chunyang Cao, F. K. Liu, Xian Chen and Shuo Li","doi":"10.3847/2041-8213/ad99d9","DOIUrl":null,"url":null,"abstract":"Quasiperiodic eruptions (QPEs) are a novel class of transients recently discovered in a few extragalactic nuclei. It has been suggested that a QPE can be produced by a main-sequence star undergoing repeated partial disruptions by the tidal field of a supermassive black hole (SMBH) immediately after getting captured on a tightly bound orbit through the Hills mechanism. In this Letter, we investigate the period-dependent formation rate of QPEs for this scenario, utilizing scattering experiments and the loss-cone theory. We calculate the QPE formation rates in both a single-SMBH and a dual-SMBH system, motivated by the overrepresentation of postmerger galaxies as QPE hosts. We find that for SMBHs of mass 106–107M⊙, most QPEs formed in this scenario have periods longer than ≃ 100 days. A single-SMBH system generally produces QPEs at a negligible rate of 10−10–10−8 yr−1 due to inefficient two-body relaxation. Meanwhile, in a dual-SMBH system, the QPE rate is enhanced by 3–4 orders of magnitude, mainly due to a boosted angular momentum evolution under tidal perturbation from the companion SMBH (galaxy). The QPE rate in a postmerger galactic nucleus hosting two equal-mass SMBHs separated by a few parsecs could reach 10−6–10−5 yr−1. Our results suggest that a nonnegligible fraction (≃10%–90%) of long-period QPEs should come from postmerger galaxies.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation Rate of Quasiperiodic Eruptions in Galactic Nuclei Containing Single and Dual Supermassive Black Holes\",\"authors\":\"Chunyang Cao, F. K. Liu, Xian Chen and Shuo Li\",\"doi\":\"10.3847/2041-8213/ad99d9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasiperiodic eruptions (QPEs) are a novel class of transients recently discovered in a few extragalactic nuclei. It has been suggested that a QPE can be produced by a main-sequence star undergoing repeated partial disruptions by the tidal field of a supermassive black hole (SMBH) immediately after getting captured on a tightly bound orbit through the Hills mechanism. In this Letter, we investigate the period-dependent formation rate of QPEs for this scenario, utilizing scattering experiments and the loss-cone theory. We calculate the QPE formation rates in both a single-SMBH and a dual-SMBH system, motivated by the overrepresentation of postmerger galaxies as QPE hosts. We find that for SMBHs of mass 106–107M⊙, most QPEs formed in this scenario have periods longer than ≃ 100 days. A single-SMBH system generally produces QPEs at a negligible rate of 10−10–10−8 yr−1 due to inefficient two-body relaxation. Meanwhile, in a dual-SMBH system, the QPE rate is enhanced by 3–4 orders of magnitude, mainly due to a boosted angular momentum evolution under tidal perturbation from the companion SMBH (galaxy). The QPE rate in a postmerger galactic nucleus hosting two equal-mass SMBHs separated by a few parsecs could reach 10−6–10−5 yr−1. Our results suggest that a nonnegligible fraction (≃10%–90%) of long-period QPEs should come from postmerger galaxies.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad99d9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad99d9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formation Rate of Quasiperiodic Eruptions in Galactic Nuclei Containing Single and Dual Supermassive Black Holes
Quasiperiodic eruptions (QPEs) are a novel class of transients recently discovered in a few extragalactic nuclei. It has been suggested that a QPE can be produced by a main-sequence star undergoing repeated partial disruptions by the tidal field of a supermassive black hole (SMBH) immediately after getting captured on a tightly bound orbit through the Hills mechanism. In this Letter, we investigate the period-dependent formation rate of QPEs for this scenario, utilizing scattering experiments and the loss-cone theory. We calculate the QPE formation rates in both a single-SMBH and a dual-SMBH system, motivated by the overrepresentation of postmerger galaxies as QPE hosts. We find that for SMBHs of mass 106–107M⊙, most QPEs formed in this scenario have periods longer than ≃ 100 days. A single-SMBH system generally produces QPEs at a negligible rate of 10−10–10−8 yr−1 due to inefficient two-body relaxation. Meanwhile, in a dual-SMBH system, the QPE rate is enhanced by 3–4 orders of magnitude, mainly due to a boosted angular momentum evolution under tidal perturbation from the companion SMBH (galaxy). The QPE rate in a postmerger galactic nucleus hosting two equal-mass SMBHs separated by a few parsecs could reach 10−6–10−5 yr−1. Our results suggest that a nonnegligible fraction (≃10%–90%) of long-period QPEs should come from postmerger galaxies.