{"title":"MISC:大型多模态模型驱动的超低比特率图像语义压缩","authors":"Chunyi Li;Guo Lu;Donghui Feng;Haoning Wu;Zicheng Zhang;Xiaohong Liu;Guangtao Zhai;Weisi Lin;Wenjun Zhang","doi":"10.1109/TIP.2024.3515874","DOIUrl":null,"url":null,"abstract":"With the evolution of storage and communication protocols, ultra-low bitrate image compression has become a highly demanding topic. However, all existing compression algorithms must sacrifice either consistency with the ground truth or perceptual quality at ultra-low bitrate. During recent years, the rapid development of the Large Multimodal Model (LMM) has made it possible to balance these two goals. To solve this problem, this paper proposes a method called Multimodal Image Semantic Compression (MISC), which consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information. Experimental results show that our proposed MISC is suitable for compressing both traditional Natural Sense Images (NSIs) and emerging AI-Generated Images (AIGIs) content. It can achieve optimal consistency and perception results while saving 50% bitrate, which has strong potential applications in the next generation of storage and communication. The code will be released on <uri>https://github.com/lcysyzxdxc/MISC</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"335-349"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MISC: Ultra-Low Bitrate Image Semantic Compression Driven by Large Multimodal Model\",\"authors\":\"Chunyi Li;Guo Lu;Donghui Feng;Haoning Wu;Zicheng Zhang;Xiaohong Liu;Guangtao Zhai;Weisi Lin;Wenjun Zhang\",\"doi\":\"10.1109/TIP.2024.3515874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the evolution of storage and communication protocols, ultra-low bitrate image compression has become a highly demanding topic. However, all existing compression algorithms must sacrifice either consistency with the ground truth or perceptual quality at ultra-low bitrate. During recent years, the rapid development of the Large Multimodal Model (LMM) has made it possible to balance these two goals. To solve this problem, this paper proposes a method called Multimodal Image Semantic Compression (MISC), which consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information. Experimental results show that our proposed MISC is suitable for compressing both traditional Natural Sense Images (NSIs) and emerging AI-Generated Images (AIGIs) content. It can achieve optimal consistency and perception results while saving 50% bitrate, which has strong potential applications in the next generation of storage and communication. The code will be released on <uri>https://github.com/lcysyzxdxc/MISC</uri>.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"335-349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816592/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816592/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MISC: Ultra-Low Bitrate Image Semantic Compression Driven by Large Multimodal Model
With the evolution of storage and communication protocols, ultra-low bitrate image compression has become a highly demanding topic. However, all existing compression algorithms must sacrifice either consistency with the ground truth or perceptual quality at ultra-low bitrate. During recent years, the rapid development of the Large Multimodal Model (LMM) has made it possible to balance these two goals. To solve this problem, this paper proposes a method called Multimodal Image Semantic Compression (MISC), which consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information. Experimental results show that our proposed MISC is suitable for compressing both traditional Natural Sense Images (NSIs) and emerging AI-Generated Images (AIGIs) content. It can achieve optimal consistency and perception results while saving 50% bitrate, which has strong potential applications in the next generation of storage and communication. The code will be released on https://github.com/lcysyzxdxc/MISC.