对三维点云理解的掩模表示学习的再思考

Chuxin Wang;Yixin Zha;Jianfeng He;Wenfei Yang;Tianzhu Zhang
{"title":"对三维点云理解的掩模表示学习的再思考","authors":"Chuxin Wang;Yixin Zha;Jianfeng He;Wenfei Yang;Tianzhu Zhang","doi":"10.1109/TIP.2024.3520008","DOIUrl":null,"url":null,"abstract":"Self-supervised point cloud representation learning aims to acquire robust and general feature representations from unlabeled data. Recently, masked point modeling-based methods have shown significant performance improvements for point cloud understanding, yet these methods rely on overlapping grouping strategies (k-nearest neighbor algorithm) resulting in early leakage of structural information of mask groups, and overlook the semantic modeling of object components resulting in parts with the same semantics having obvious feature differences due to position differences. In this work, we rethink grouping strategies and pretext tasks that are more suitable for self-supervised point cloud representation learning and propose a novel hierarchical masked representation learning method, including an optimal transport-based hierarchical grouping strategy, a prototype-based part modeling module, and a hierarchical attention encoder. The proposed method enjoys several merits. First, the proposed grouping strategy partitions the point cloud into non-overlapping groups, eliminating the early leakage of structural information in the masked groups. Second, the proposed prototype-based part modeling module dynamically models different object components, ensuring feature consistency on parts with the same semantics. Extensive experiments on four downstream tasks demonstrate that our method surpasses state-of-the-art 3D representation learning methods. Furthermore, Comprehensive ablation studies and visualizations demonstrate the effectiveness of the proposed modules.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"247-262"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking Masked Representation Learning for 3D Point Cloud Understanding\",\"authors\":\"Chuxin Wang;Yixin Zha;Jianfeng He;Wenfei Yang;Tianzhu Zhang\",\"doi\":\"10.1109/TIP.2024.3520008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-supervised point cloud representation learning aims to acquire robust and general feature representations from unlabeled data. Recently, masked point modeling-based methods have shown significant performance improvements for point cloud understanding, yet these methods rely on overlapping grouping strategies (k-nearest neighbor algorithm) resulting in early leakage of structural information of mask groups, and overlook the semantic modeling of object components resulting in parts with the same semantics having obvious feature differences due to position differences. In this work, we rethink grouping strategies and pretext tasks that are more suitable for self-supervised point cloud representation learning and propose a novel hierarchical masked representation learning method, including an optimal transport-based hierarchical grouping strategy, a prototype-based part modeling module, and a hierarchical attention encoder. The proposed method enjoys several merits. First, the proposed grouping strategy partitions the point cloud into non-overlapping groups, eliminating the early leakage of structural information in the masked groups. Second, the proposed prototype-based part modeling module dynamically models different object components, ensuring feature consistency on parts with the same semantics. Extensive experiments on four downstream tasks demonstrate that our method surpasses state-of-the-art 3D representation learning methods. Furthermore, Comprehensive ablation studies and visualizations demonstrate the effectiveness of the proposed modules.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"247-262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10815033/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10815033/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rethinking Masked Representation Learning for 3D Point Cloud Understanding
Self-supervised point cloud representation learning aims to acquire robust and general feature representations from unlabeled data. Recently, masked point modeling-based methods have shown significant performance improvements for point cloud understanding, yet these methods rely on overlapping grouping strategies (k-nearest neighbor algorithm) resulting in early leakage of structural information of mask groups, and overlook the semantic modeling of object components resulting in parts with the same semantics having obvious feature differences due to position differences. In this work, we rethink grouping strategies and pretext tasks that are more suitable for self-supervised point cloud representation learning and propose a novel hierarchical masked representation learning method, including an optimal transport-based hierarchical grouping strategy, a prototype-based part modeling module, and a hierarchical attention encoder. The proposed method enjoys several merits. First, the proposed grouping strategy partitions the point cloud into non-overlapping groups, eliminating the early leakage of structural information in the masked groups. Second, the proposed prototype-based part modeling module dynamically models different object components, ensuring feature consistency on parts with the same semantics. Extensive experiments on four downstream tasks demonstrate that our method surpasses state-of-the-art 3D representation learning methods. Furthermore, Comprehensive ablation studies and visualizations demonstrate the effectiveness of the proposed modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Doubly Contrastive Learning for Cross Domain Facial Action Unit Detection. Global Cross-Entropy Loss for Deep Face Recognition. Denoised and Dynamic Alignment Enhancement for Zero-Shot Learning Cross-Camera Pedestrian Trajectory Retrieval Based on Linear Trajectory Manifolds Dynamic Atomic Column Detection in Transmission Electron Microscopy Videos via Ridge Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1