用大涡模拟模拟浅积云时CCN激活参数化的校正评估

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Research Pub Date : 2024-12-22 DOI:10.1016/j.atmosres.2024.107881
Yuan Wang, Xiaoqi Xu, Chunsong Lu, Lei Zhu, Xinyi Wang, Ping Zhang
{"title":"用大涡模拟模拟浅积云时CCN激活参数化的校正评估","authors":"Yuan Wang, Xiaoqi Xu, Chunsong Lu, Lei Zhu, Xinyi Wang, Ping Zhang","doi":"10.1016/j.atmosres.2024.107881","DOIUrl":null,"url":null,"abstract":"Cloud condensation nuclei (CCN) activation plays a crucial role in regional cloud-precipitation and global climate. However, inaccuracies in CCN activation parameterization, stemming from the presence of unactivated particles in CCN measurements that are mistakenly included in developing CCN activation parameterizations, can introduce biases in model predictions of cloud droplet number concentration, subsequently affecting cloud microphysics, precipitation initiation, and radiation. To address this issue, this study proposes correction coefficients for CCN activation parameterization using the Twomey power-law function and applies them in the large-eddy model to simulate continental shallow cumulus over the Southern Great Plains, USA. Results reveal that compared to simulations using uncorrected CCN parameterization, those using corrected parameterization decrease cloud droplet number concentration by 32.8 %, leading to an increase of cloud water autoconversion rate by 8.9 % and a decrease of cloud optical thickness by 17.3 %. This indicates a suppression of cloud-precipitation processes and an overestimation of cloud radiative cooling in the default scheme. Moreover, as aerosol loading increases, the differences between the corrected and uncorrected parameterization slightly diminish. Compared to uncorrected CCN parameterization, those using corrected parameterization exhibit stronger cloud sensitivity to aerosols, which partially mitigates the overestimation of cloud radiative cooling in the default scheme. The corrected CCN activation parameterization could help alleviate the overestimation of aerosol indirect effects, particularly in clouds with low supersaturation conditions, thereby contributing to reduced uncertainties in aerosol-cloud interaction simulations.","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"41 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the corrected CCN activation parameterizations in simulating shallow cumulus using large-eddy simulations\",\"authors\":\"Yuan Wang, Xiaoqi Xu, Chunsong Lu, Lei Zhu, Xinyi Wang, Ping Zhang\",\"doi\":\"10.1016/j.atmosres.2024.107881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud condensation nuclei (CCN) activation plays a crucial role in regional cloud-precipitation and global climate. However, inaccuracies in CCN activation parameterization, stemming from the presence of unactivated particles in CCN measurements that are mistakenly included in developing CCN activation parameterizations, can introduce biases in model predictions of cloud droplet number concentration, subsequently affecting cloud microphysics, precipitation initiation, and radiation. To address this issue, this study proposes correction coefficients for CCN activation parameterization using the Twomey power-law function and applies them in the large-eddy model to simulate continental shallow cumulus over the Southern Great Plains, USA. Results reveal that compared to simulations using uncorrected CCN parameterization, those using corrected parameterization decrease cloud droplet number concentration by 32.8 %, leading to an increase of cloud water autoconversion rate by 8.9 % and a decrease of cloud optical thickness by 17.3 %. This indicates a suppression of cloud-precipitation processes and an overestimation of cloud radiative cooling in the default scheme. Moreover, as aerosol loading increases, the differences between the corrected and uncorrected parameterization slightly diminish. Compared to uncorrected CCN parameterization, those using corrected parameterization exhibit stronger cloud sensitivity to aerosols, which partially mitigates the overestimation of cloud radiative cooling in the default scheme. The corrected CCN activation parameterization could help alleviate the overestimation of aerosol indirect effects, particularly in clouds with low supersaturation conditions, thereby contributing to reduced uncertainties in aerosol-cloud interaction simulations.\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.atmosres.2024.107881\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.atmosres.2024.107881","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

云凝结核的激活在区域云降水和全球气候中起着至关重要的作用。然而,CCN激活参数化的不准确性,源于CCN测量中未激活粒子的存在,这些未激活粒子被错误地包含在CCN激活参数化中,可能会在云滴数浓度的模型预测中引入偏差,从而影响云微物理、降水起始和辐射。为了解决这一问题,本研究利用Twomey幂律函数提出CCN激活参数化的校正系数,并将其应用于美国南部大平原大陆浅积云的大涡模式。结果表明,与未校正的CCN参数化相比,校正后的CCN参数化使云滴数浓度降低了32.8%,导致云水自转换率提高了8.9%,云光学厚度减少了17.3%。这表明在默认方案中对云降水过程的抑制和对云辐射冷却的高估。此外,随着气溶胶负荷的增加,校正和未校正参数化之间的差异略有减小。与未校正的CCN参数化相比,使用校正参数化的CCN对气溶胶表现出更强的云敏感性,这在一定程度上减轻了默认方案中对云辐射冷却的高估。修正后的CCN激活参数化有助于减轻气溶胶间接效应的高估,特别是在低过饱和条件的云中,从而有助于减少气溶胶-云相互作用模拟的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of the corrected CCN activation parameterizations in simulating shallow cumulus using large-eddy simulations
Cloud condensation nuclei (CCN) activation plays a crucial role in regional cloud-precipitation and global climate. However, inaccuracies in CCN activation parameterization, stemming from the presence of unactivated particles in CCN measurements that are mistakenly included in developing CCN activation parameterizations, can introduce biases in model predictions of cloud droplet number concentration, subsequently affecting cloud microphysics, precipitation initiation, and radiation. To address this issue, this study proposes correction coefficients for CCN activation parameterization using the Twomey power-law function and applies them in the large-eddy model to simulate continental shallow cumulus over the Southern Great Plains, USA. Results reveal that compared to simulations using uncorrected CCN parameterization, those using corrected parameterization decrease cloud droplet number concentration by 32.8 %, leading to an increase of cloud water autoconversion rate by 8.9 % and a decrease of cloud optical thickness by 17.3 %. This indicates a suppression of cloud-precipitation processes and an overestimation of cloud radiative cooling in the default scheme. Moreover, as aerosol loading increases, the differences between the corrected and uncorrected parameterization slightly diminish. Compared to uncorrected CCN parameterization, those using corrected parameterization exhibit stronger cloud sensitivity to aerosols, which partially mitigates the overestimation of cloud radiative cooling in the default scheme. The corrected CCN activation parameterization could help alleviate the overestimation of aerosol indirect effects, particularly in clouds with low supersaturation conditions, thereby contributing to reduced uncertainties in aerosol-cloud interaction simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
期刊最新文献
New insights into the molecular characteristics-dependent light absorption variation of water-soluble organic matter in biomass burning smoke Black carbon pollution over India simulated with recent emission inventories and WRF-CHEM model Characteristics of local recirculation affecting summer ozone in coastal areas of the Korean Peninsula Impacts of meteorological and precursor emission factors on PM2.5 and O3 from 2019 to 2022: Insights from multiple perspectives Evaluation of six latest precipitation datasets for extreme precipitation estimates and hydrological application across various climate regions in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1