Al3+取代钴铁氧体纳米粒子的结构和电学性能及其抗菌活性的提高

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED Journal of Superconductivity and Novel Magnetism Pub Date : 2024-12-27 DOI:10.1007/s10948-024-06851-1
Wafaa A. Shatti, Zena M. A. Abbas, Ali M. Mohammad, Sulaf M. Mohammed
{"title":"Al3+取代钴铁氧体纳米粒子的结构和电学性能及其抗菌活性的提高","authors":"Wafaa A. Shatti,&nbsp;Zena M. A. Abbas,&nbsp;Ali M. Mohammad,&nbsp;Sulaf M. Mohammed","doi":"10.1007/s10948-024-06851-1","DOIUrl":null,"url":null,"abstract":"<div><p>Nanomaterials show strong potential for antibacterial treatments by targeting various bacterial strains and bypassing resistance through mechanical cell damage. This occurs when nanoparticles interact with bacterial cell walls, compromising their structural integrity. These mechanisms highlight nanomaterials as effective tools in combating infections. Using the sol–gel method, this study synthesized Co<sub>1-<i>x</i></sub>Al<sub><i>x</i></sub>Fe<sub>2</sub>O<sub>4</sub> nanoferrites (<i>x</i> = 0.0, 0.2, 0.4, 0.6, 0.8). This study examines the effects of substituting trivalent Al<sup>3</sup>⁺ ions on cobalt ferrite nanoparticles’ structural and electrical properties and their antibacterial activity. X-ray diffraction confirmed the formation of Co<sub>1-<i>x</i></sub>Al<i>ₓ</i>Fe₂O₄ nanoferrites in the <span>\\(Fd\\overline{3 }m\\)</span> space group, showing a shift towards lower 2<i>θ</i> angles in the (311) plane as Al<sup>3</sup>⁺ content increased. The crystal size reached 29.04 when (<i>x</i> = 0.0 and 0.4) and decreased to 25.29 when (<i>x</i> = 0.8). Fourier transform infrared spectroscopy identified absorption band characteristic of the cubic spinel structure, while field emission-scanning electron microscopy revealed polyhedral nanoparticles clustered in nanoscale formations. Particle sizes ranged from 37.21 nm at <i>x</i> = 0.4 to 31.11 nm at <i>x</i> = 0.8. A decrease in dielectric properties with increasing frequency was consistent with the Maxwell–Wagner model and Koops’ theory, while AC conductivity increased as charge carrier mobility rose with frequency. Antibacterial tests using the Agar well diffusion method showed that <i>Escherichia coli</i> was the most sensitive strain, followed by <i>Klebsiella</i> spp., with <i>Streptococcus</i> spp. Displaying the highest resistance. Nanoparticles at <i>x</i> = 0.8 demonstrated the most potent antibacterial activity. Overall, the results highlight that cation substitution within the cubic spinel lattice significantly impacts the structural, electrical, and antibacterial properties of cobalt ferrite nanoparticles.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and Electrical Properties of Al3+ Substituted Cobalt Ferrite Nanoparticles for Improved Antibacterial Activity\",\"authors\":\"Wafaa A. Shatti,&nbsp;Zena M. A. Abbas,&nbsp;Ali M. Mohammad,&nbsp;Sulaf M. Mohammed\",\"doi\":\"10.1007/s10948-024-06851-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanomaterials show strong potential for antibacterial treatments by targeting various bacterial strains and bypassing resistance through mechanical cell damage. This occurs when nanoparticles interact with bacterial cell walls, compromising their structural integrity. These mechanisms highlight nanomaterials as effective tools in combating infections. Using the sol–gel method, this study synthesized Co<sub>1-<i>x</i></sub>Al<sub><i>x</i></sub>Fe<sub>2</sub>O<sub>4</sub> nanoferrites (<i>x</i> = 0.0, 0.2, 0.4, 0.6, 0.8). This study examines the effects of substituting trivalent Al<sup>3</sup>⁺ ions on cobalt ferrite nanoparticles’ structural and electrical properties and their antibacterial activity. X-ray diffraction confirmed the formation of Co<sub>1-<i>x</i></sub>Al<i>ₓ</i>Fe₂O₄ nanoferrites in the <span>\\\\(Fd\\\\overline{3 }m\\\\)</span> space group, showing a shift towards lower 2<i>θ</i> angles in the (311) plane as Al<sup>3</sup>⁺ content increased. The crystal size reached 29.04 when (<i>x</i> = 0.0 and 0.4) and decreased to 25.29 when (<i>x</i> = 0.8). Fourier transform infrared spectroscopy identified absorption band characteristic of the cubic spinel structure, while field emission-scanning electron microscopy revealed polyhedral nanoparticles clustered in nanoscale formations. Particle sizes ranged from 37.21 nm at <i>x</i> = 0.4 to 31.11 nm at <i>x</i> = 0.8. A decrease in dielectric properties with increasing frequency was consistent with the Maxwell–Wagner model and Koops’ theory, while AC conductivity increased as charge carrier mobility rose with frequency. Antibacterial tests using the Agar well diffusion method showed that <i>Escherichia coli</i> was the most sensitive strain, followed by <i>Klebsiella</i> spp., with <i>Streptococcus</i> spp. Displaying the highest resistance. Nanoparticles at <i>x</i> = 0.8 demonstrated the most potent antibacterial activity. Overall, the results highlight that cation substitution within the cubic spinel lattice significantly impacts the structural, electrical, and antibacterial properties of cobalt ferrite nanoparticles.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-024-06851-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06851-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

纳米材料可以靶向多种细菌菌株,并通过机械细胞损伤绕过耐药性,显示出很强的抗菌治疗潜力。当纳米颗粒与细菌细胞壁相互作用,破坏其结构完整性时,就会发生这种情况。这些机制突出了纳米材料作为对抗感染的有效工具。采用溶胶-凝胶法制备了Co1-xAlxFe2O4纳米铁氧体(x = 0.0, 0.2, 0.4, 0.6, 0.8)。本研究考察了三价Al3 +取代对钴铁氧体纳米颗粒结构、电学性能及抗菌活性的影响。x射线衍射证实在\(Fd\overline{3 }m\)空间群中形成了Co1-xAlₓFe₂O₄纳米铁素体,随着Al3 +含量的增加,在(311)平面上的2θ角向下移动。当x = 0.0和0.4时,晶体尺寸达到29.04,当x = 0.8时,晶体尺寸减小到25.29。傅里叶变换红外光谱鉴定了立方尖晶石结构的吸收带特征,而场发射扫描电子显微镜则发现了以纳米级结构聚集的多面体纳米颗粒。粒径范围从x = 0.4时的37.21 nm到x = 0.8时的31.11 nm。介电性能随频率的增加而降低,与Maxwell-Wagner模型和Koops理论一致,而交流电导率随载流子迁移率随频率的增加而增加。琼脂孔扩散法抑菌试验结果显示,大肠埃希菌最敏感,克雷伯氏菌次之,链球菌耐药最高。纳米粒子在x = 0.8时表现出最强的抗菌活性。总的来说,研究结果表明立方尖晶石晶格内的阳离子取代显著影响了钴铁氧体纳米颗粒的结构、电学和抗菌性能。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural and Electrical Properties of Al3+ Substituted Cobalt Ferrite Nanoparticles for Improved Antibacterial Activity

Nanomaterials show strong potential for antibacterial treatments by targeting various bacterial strains and bypassing resistance through mechanical cell damage. This occurs when nanoparticles interact with bacterial cell walls, compromising their structural integrity. These mechanisms highlight nanomaterials as effective tools in combating infections. Using the sol–gel method, this study synthesized Co1-xAlxFe2O4 nanoferrites (x = 0.0, 0.2, 0.4, 0.6, 0.8). This study examines the effects of substituting trivalent Al3⁺ ions on cobalt ferrite nanoparticles’ structural and electrical properties and their antibacterial activity. X-ray diffraction confirmed the formation of Co1-xAlFe₂O₄ nanoferrites in the \(Fd\overline{3 }m\) space group, showing a shift towards lower 2θ angles in the (311) plane as Al3⁺ content increased. The crystal size reached 29.04 when (x = 0.0 and 0.4) and decreased to 25.29 when (x = 0.8). Fourier transform infrared spectroscopy identified absorption band characteristic of the cubic spinel structure, while field emission-scanning electron microscopy revealed polyhedral nanoparticles clustered in nanoscale formations. Particle sizes ranged from 37.21 nm at x = 0.4 to 31.11 nm at x = 0.8. A decrease in dielectric properties with increasing frequency was consistent with the Maxwell–Wagner model and Koops’ theory, while AC conductivity increased as charge carrier mobility rose with frequency. Antibacterial tests using the Agar well diffusion method showed that Escherichia coli was the most sensitive strain, followed by Klebsiella spp., with Streptococcus spp. Displaying the highest resistance. Nanoparticles at x = 0.8 demonstrated the most potent antibacterial activity. Overall, the results highlight that cation substitution within the cubic spinel lattice significantly impacts the structural, electrical, and antibacterial properties of cobalt ferrite nanoparticles.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
期刊最新文献
Geometric Phase in Kitaev Quantum Spin Liquid Probing Magnetic Characteristics of \(Co_{60}Fe_{40}\) Films Prepared by Pulsed Laser Deposition Impact of Cr Insertion Layer on Spin Transport Properties in Co2FeAl/Ta System Current-Phase Relation for Transparent Superconducting Junctions Memory Function of a Three-Dimensional Holstein-Like System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1