新型等温核酸扩增检测疟疾寄生虫方法

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2024-12-27 DOI:10.1007/s00253-024-13357-2
Lucas Tavares de Queiroz, Barbara de Oliveira Baptista, Rebecca de Abreu-Fernandes, Carolina de Souza Faria Pereira, Juliana Aline de Souza Lemos, Hugo Amorim dos Santos de Souza, Rodrigo Medeiros Martorano, Evelyn Kety Pratt Riccio, Paulo Renato Rivas Totino, Joseli Oliveira-Ferreira, Josué da Costa Lima-Junior, Cláudio Tadeu Daniel-Ribeiro, Lilian Rose Pratt-Riccio
{"title":"新型等温核酸扩增检测疟疾寄生虫方法","authors":"Lucas Tavares de Queiroz,&nbsp;Barbara de Oliveira Baptista,&nbsp;Rebecca de Abreu-Fernandes,&nbsp;Carolina de Souza Faria Pereira,&nbsp;Juliana Aline de Souza Lemos,&nbsp;Hugo Amorim dos Santos de Souza,&nbsp;Rodrigo Medeiros Martorano,&nbsp;Evelyn Kety Pratt Riccio,&nbsp;Paulo Renato Rivas Totino,&nbsp;Joseli Oliveira-Ferreira,&nbsp;Josué da Costa Lima-Junior,&nbsp;Cláudio Tadeu Daniel-Ribeiro,&nbsp;Lilian Rose Pratt-Riccio","doi":"10.1007/s00253-024-13357-2","DOIUrl":null,"url":null,"abstract":"<p>Malaria, a parasitic disease caused by <i>Plasmodium</i> spp. and transmitted by <i>Anopheles</i> mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination. However, limited access to sensitive molecular tests means that microscopic examination and rapid diagnostic tests (RDT) are the most used methods in endemic areas, despite their lower diagnostic accuracy. Therefore, there is a need for developing sensitive, simple, accurate, and rapid diagnostic tools suitable for field conditions. Herein, we aimed to explore the potential of the enzymatic recombinase amplification assay (ERA® Technology) as a remote laboratory test by evaluating and validating the GENEYE® ERA <i>Plasmodium</i> detection kit in Brazilian endemic areas. A cross-sectional cohort study was conducted between June and August of 2023 in the Brazilian Amazon. The study enrolled 323 participants residing in three malaria-affected regions: Cruzeiro do Sul and Mâncio Lima (Acre State) and Guajará (Amazonas State). The participants were tested for malaria by microscopy, rapid diagnostic tests (RDT), nested PCR (nPCR), quantitative real-time PCR (qPCR), and ERA. The sensitivity, specificity, and predictive values were assessed using nPCR as a gold standard. <i>Plasmodium</i> prevalence was 21.7%, 18.8%, 19.2%, 21.7%, and 21.7% by nPCR, microscopy, RDT, qPCR, and ERA respectively. Using nPCR as the standard, qPCR, and ERA showed a sensitivity of 100%. In comparison, microscopy and RDT showed a sensitivity of 87.1% and 88.6%, a negative predictive value (NPV) of 96.56 and 96.93, and kappa values of 0.91 and 0.92, respectively. For <i>Plasmodium falciparum</i>, the sensitivity of qPCR and ERA was 100% while the sensitivity of microscopy and RDT was 96.9% and 93.7%, and the NPV was 99.66 and 99.32, respectively. For <i>Plasmodium vivax</i>, only ERA showed the same sensitivity of nPCR. The sensitivity, NPV, and kappa values were 78.85%, 97.27, and 0.87 for qPCR and microscopy, and 84.21%, 97.94, and 0.9 for RDT. The data presented here show that the GENEYE® ERA <i>Plasmodium</i> detection kit offers a promising alternative to traditional malaria diagnostic methods. Its high sensitivity, specificity, fast processing time, and operational simplicity position it as a valuable point-of-care diagnostic tool, particularly in resource-limited and remote malaria-endemic areas.</p><p>• <i>GENEYE® ERA kit detects Plasmodium in under 25 min, no DNA purification needed.</i></p><p>• <i>The kit matches or exceeds the compared methods in sensitivity and specificity.</i></p><p>• <i>The kit is suitable for accurate testing in low-infrastructure, point-of-care settings.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-024-13357-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel isothermal nucleic acid amplification method for detecting malaria parasites\",\"authors\":\"Lucas Tavares de Queiroz,&nbsp;Barbara de Oliveira Baptista,&nbsp;Rebecca de Abreu-Fernandes,&nbsp;Carolina de Souza Faria Pereira,&nbsp;Juliana Aline de Souza Lemos,&nbsp;Hugo Amorim dos Santos de Souza,&nbsp;Rodrigo Medeiros Martorano,&nbsp;Evelyn Kety Pratt Riccio,&nbsp;Paulo Renato Rivas Totino,&nbsp;Joseli Oliveira-Ferreira,&nbsp;Josué da Costa Lima-Junior,&nbsp;Cláudio Tadeu Daniel-Ribeiro,&nbsp;Lilian Rose Pratt-Riccio\",\"doi\":\"10.1007/s00253-024-13357-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Malaria, a parasitic disease caused by <i>Plasmodium</i> spp. and transmitted by <i>Anopheles</i> mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination. However, limited access to sensitive molecular tests means that microscopic examination and rapid diagnostic tests (RDT) are the most used methods in endemic areas, despite their lower diagnostic accuracy. Therefore, there is a need for developing sensitive, simple, accurate, and rapid diagnostic tools suitable for field conditions. Herein, we aimed to explore the potential of the enzymatic recombinase amplification assay (ERA® Technology) as a remote laboratory test by evaluating and validating the GENEYE® ERA <i>Plasmodium</i> detection kit in Brazilian endemic areas. A cross-sectional cohort study was conducted between June and August of 2023 in the Brazilian Amazon. The study enrolled 323 participants residing in three malaria-affected regions: Cruzeiro do Sul and Mâncio Lima (Acre State) and Guajará (Amazonas State). The participants were tested for malaria by microscopy, rapid diagnostic tests (RDT), nested PCR (nPCR), quantitative real-time PCR (qPCR), and ERA. The sensitivity, specificity, and predictive values were assessed using nPCR as a gold standard. <i>Plasmodium</i> prevalence was 21.7%, 18.8%, 19.2%, 21.7%, and 21.7% by nPCR, microscopy, RDT, qPCR, and ERA respectively. Using nPCR as the standard, qPCR, and ERA showed a sensitivity of 100%. In comparison, microscopy and RDT showed a sensitivity of 87.1% and 88.6%, a negative predictive value (NPV) of 96.56 and 96.93, and kappa values of 0.91 and 0.92, respectively. For <i>Plasmodium falciparum</i>, the sensitivity of qPCR and ERA was 100% while the sensitivity of microscopy and RDT was 96.9% and 93.7%, and the NPV was 99.66 and 99.32, respectively. For <i>Plasmodium vivax</i>, only ERA showed the same sensitivity of nPCR. The sensitivity, NPV, and kappa values were 78.85%, 97.27, and 0.87 for qPCR and microscopy, and 84.21%, 97.94, and 0.9 for RDT. The data presented here show that the GENEYE® ERA <i>Plasmodium</i> detection kit offers a promising alternative to traditional malaria diagnostic methods. Its high sensitivity, specificity, fast processing time, and operational simplicity position it as a valuable point-of-care diagnostic tool, particularly in resource-limited and remote malaria-endemic areas.</p><p>• <i>GENEYE® ERA kit detects Plasmodium in under 25 min, no DNA purification needed.</i></p><p>• <i>The kit matches or exceeds the compared methods in sensitivity and specificity.</i></p><p>• <i>The kit is suitable for accurate testing in low-infrastructure, point-of-care settings.</i></p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00253-024-13357-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00253-024-13357-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-024-13357-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

疟疾是一种由疟原虫引起并由按蚊传播的寄生虫病,仍然是一个主要的全球健康问题,估计2022年有2.49亿例病例和60.8万人死亡。快速和准确的诊断和治疗对于控制和消除疟疾至关重要。然而,由于获得敏感分子检测的机会有限,显微检查和快速诊断检测(RDT)是流行地区最常用的方法,尽管它们的诊断准确性较低。因此,需要开发适用于现场条件的灵敏、简单、准确、快速的诊断工具。在此,我们旨在通过在巴西流行地区评估和验证GENEYE®ERA疟原虫检测 试剂盒,探索酶重组酶扩增法(ERA®Technology)作为远程实验室检测的潜力。一项横断面队列研究于2023年6月至8月在巴西亚马逊地区进行。该研究招募了居住在三个受疟疾影响地区的323名参与者:南克鲁塞罗州和南西奥利马(阿克里州)和瓜哈尔(亚马逊州)。通过显微镜、快速诊断试验(RDT)、巢式PCR (nPCR)、实时定量PCR (qPCR)和ERA对这些参与者进行了疟疾检测。使用nPCR作为金标准评估灵敏度、特异性和预测值。nPCR、镜检、RDT、qPCR和ERA检测的疟原虫患病率分别为21.7%、18.8%、19.2%、21.7%和21.7%。以nPCR为标准,qPCR和ERA的灵敏度均为100%。相比之下,显微镜和RDT的敏感性分别为87.1%和88.6%,阴性预测值(NPV)分别为96.56和96.93,kappa值分别为0.91和0.92。对于恶性疟原虫,qPCR和ERA的灵敏度为100%,镜检和RDT的灵敏度分别为96.9%和93.7%,NPV分别为99.66和99.32。对于间日疟原虫,只有ERA具有与nPCR相同的敏感性。qPCR和显微镜检测的灵敏度、NPV和kappa值分别为78.85%、97.27和0.87,RDT检测的灵敏度、NPV和kappa值分别为84.21%、97.94和0.9。本文提供的数据表明,GENEYE®ERA疟原虫检测试剂盒为传统疟疾诊断方法提供了一个有希望的替代方案。其高灵敏度、特异性、快速处理时间和操作简单性使其成为一种宝贵的即时诊断工具,特别是在资源有限和偏远疟疾流行地区。•GENEYE®ERA试剂盒在25分钟内检测疟原虫,无需DNA纯化。•试剂盒在灵敏度和特异性上匹配或超过比较方法。•该试剂盒适用于低基础设施,护理点设置的准确测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel isothermal nucleic acid amplification method for detecting malaria parasites

Malaria, a parasitic disease caused by Plasmodium spp. and transmitted by Anopheles mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination. However, limited access to sensitive molecular tests means that microscopic examination and rapid diagnostic tests (RDT) are the most used methods in endemic areas, despite their lower diagnostic accuracy. Therefore, there is a need for developing sensitive, simple, accurate, and rapid diagnostic tools suitable for field conditions. Herein, we aimed to explore the potential of the enzymatic recombinase amplification assay (ERA® Technology) as a remote laboratory test by evaluating and validating the GENEYE® ERA Plasmodium detection kit in Brazilian endemic areas. A cross-sectional cohort study was conducted between June and August of 2023 in the Brazilian Amazon. The study enrolled 323 participants residing in three malaria-affected regions: Cruzeiro do Sul and Mâncio Lima (Acre State) and Guajará (Amazonas State). The participants were tested for malaria by microscopy, rapid diagnostic tests (RDT), nested PCR (nPCR), quantitative real-time PCR (qPCR), and ERA. The sensitivity, specificity, and predictive values were assessed using nPCR as a gold standard. Plasmodium prevalence was 21.7%, 18.8%, 19.2%, 21.7%, and 21.7% by nPCR, microscopy, RDT, qPCR, and ERA respectively. Using nPCR as the standard, qPCR, and ERA showed a sensitivity of 100%. In comparison, microscopy and RDT showed a sensitivity of 87.1% and 88.6%, a negative predictive value (NPV) of 96.56 and 96.93, and kappa values of 0.91 and 0.92, respectively. For Plasmodium falciparum, the sensitivity of qPCR and ERA was 100% while the sensitivity of microscopy and RDT was 96.9% and 93.7%, and the NPV was 99.66 and 99.32, respectively. For Plasmodium vivax, only ERA showed the same sensitivity of nPCR. The sensitivity, NPV, and kappa values were 78.85%, 97.27, and 0.87 for qPCR and microscopy, and 84.21%, 97.94, and 0.9 for RDT. The data presented here show that the GENEYE® ERA Plasmodium detection kit offers a promising alternative to traditional malaria diagnostic methods. Its high sensitivity, specificity, fast processing time, and operational simplicity position it as a valuable point-of-care diagnostic tool, particularly in resource-limited and remote malaria-endemic areas.

GENEYE® ERA kit detects Plasmodium in under 25 min, no DNA purification needed.

The kit matches or exceeds the compared methods in sensitivity and specificity.

The kit is suitable for accurate testing in low-infrastructure, point-of-care settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
The role of essential oils as eco-friendly strategy to control biofilm collected in the Colosseum (Rome, Italy) From pre-culture to solvent: current trends in Clostridium acetobutylicum cultivation MalS, a periplasmic α-amylase in Escherichia coli, has a binding affinity to glycogen with unique substrate specificities Establishment of one-step duplex TaqMan real-time PCR for detection of feline coronavirus and panleukopenia virus Enhancement of immune responses to classical swine fever virus E2 in mice by fusion or mixture with the porcine IL-28B
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1