{"title":"地霉醇脱氢酶对二芳酮的底物扩增突变","authors":"Zhongyao Tang, Yuuki Takagi, Afifa Ayu Koesoema, Tomoko Matsuda","doi":"10.1007/s00253-024-13375-0","DOIUrl":null,"url":null,"abstract":"<p>Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from <i>Geotrichum candidum</i> NBRC 4597 (<i>G. candidum</i> acetophenone reductase, <i>Gc</i>APRD) was eliminated by simultaneous site-directed mutagenesis of Phe56 (in the large pocket) and Trp288 (in the small pocket). As a result, two double mutants, Phe56Ile/Trp288Ala, and Phe56Ala/Trp288Ala, exhibited much higher specific activities towards 2-(4′-chlorobenzoyl)pyridine (4.5 μmol/min/mg and 3.4 μmol/min/mg, respectively) than the wild type (< 0.2 μmol/min/mg). In whole-cell-catalyzed asymmetric reductions of diaryl ketones, Phe56Ile/Trp288Ala significantly increased the isolated yields, which were over 90% for the reactions of most of the tested substrates. Regarding enantioselectivity, Phe56Ile/Trp288Ala and Phe56Ala/Trp288Ala, and Trp288Ala generally exhibited similar selectivity to produce (<i>R</i>)-alcohols with up to 97% <i>ee</i>.</p><p><i>• Phe56 in Geotrichum reductase (GcAPRD) was mutated to eliminate steric hindrance.</i></p><p><i>• Mutation at Phe56 increased enzymatic activity and expanded substrate specificity.</i></p><p><i>• Phe56Ile/Trp288Ala showed high activity and (R)-selectivity towards diaryl ketones.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"108 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-024-13375-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Substrate expansion of Geotrichum candidum alcohol dehydrogenase towards diaryl ketones by mutation\",\"authors\":\"Zhongyao Tang, Yuuki Takagi, Afifa Ayu Koesoema, Tomoko Matsuda\",\"doi\":\"10.1007/s00253-024-13375-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from <i>Geotrichum candidum</i> NBRC 4597 (<i>G. candidum</i> acetophenone reductase, <i>Gc</i>APRD) was eliminated by simultaneous site-directed mutagenesis of Phe56 (in the large pocket) and Trp288 (in the small pocket). As a result, two double mutants, Phe56Ile/Trp288Ala, and Phe56Ala/Trp288Ala, exhibited much higher specific activities towards 2-(4′-chlorobenzoyl)pyridine (4.5 μmol/min/mg and 3.4 μmol/min/mg, respectively) than the wild type (< 0.2 μmol/min/mg). In whole-cell-catalyzed asymmetric reductions of diaryl ketones, Phe56Ile/Trp288Ala significantly increased the isolated yields, which were over 90% for the reactions of most of the tested substrates. Regarding enantioselectivity, Phe56Ile/Trp288Ala and Phe56Ala/Trp288Ala, and Trp288Ala generally exhibited similar selectivity to produce (<i>R</i>)-alcohols with up to 97% <i>ee</i>.</p><p><i>• Phe56 in Geotrichum reductase (GcAPRD) was mutated to eliminate steric hindrance.</i></p><p><i>• Mutation at Phe56 increased enzymatic activity and expanded substrate specificity.</i></p><p><i>• Phe56Ile/Trp288Ala showed high activity and (R)-selectivity towards diaryl ketones.</i></p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00253-024-13375-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00253-024-13375-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-024-13375-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Substrate expansion of Geotrichum candidum alcohol dehydrogenase towards diaryl ketones by mutation
Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from Geotrichum candidum NBRC 4597 (G. candidum acetophenone reductase, GcAPRD) was eliminated by simultaneous site-directed mutagenesis of Phe56 (in the large pocket) and Trp288 (in the small pocket). As a result, two double mutants, Phe56Ile/Trp288Ala, and Phe56Ala/Trp288Ala, exhibited much higher specific activities towards 2-(4′-chlorobenzoyl)pyridine (4.5 μmol/min/mg and 3.4 μmol/min/mg, respectively) than the wild type (< 0.2 μmol/min/mg). In whole-cell-catalyzed asymmetric reductions of diaryl ketones, Phe56Ile/Trp288Ala significantly increased the isolated yields, which were over 90% for the reactions of most of the tested substrates. Regarding enantioselectivity, Phe56Ile/Trp288Ala and Phe56Ala/Trp288Ala, and Trp288Ala generally exhibited similar selectivity to produce (R)-alcohols with up to 97% ee.
• Phe56 in Geotrichum reductase (GcAPRD) was mutated to eliminate steric hindrance.
• Mutation at Phe56 increased enzymatic activity and expanded substrate specificity.
• Phe56Ile/Trp288Ala showed high activity and (R)-selectivity towards diaryl ketones.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.