基于音频的年龄域转换亲属关系验证

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-12-11 DOI:10.1109/LSP.2024.3515811
Qiyang Sun;Alican Akman;Xin Jing;Manuel Milling;Björn W. Schuller
{"title":"基于音频的年龄域转换亲属关系验证","authors":"Qiyang Sun;Alican Akman;Xin Jing;Manuel Milling;Björn W. Schuller","doi":"10.1109/LSP.2024.3515811","DOIUrl":null,"url":null,"abstract":"Audio-based kinship verification (AKV) is important in many domains, such as home security monitoring, forensic identification, and social network analysis. A key challenge in the task arises from differences in age across samples from different individuals, which can be interpreted as a domain bias in a cross-domain verification task. To address this issue, we design the notion of an “age-standardised domain” wherein we utilise the optimised CycleGAN-VC3 network to perform age-audio conversion to generate the in-domain audio. The generated audio dataset is employed to extract a range of features, which are then fed into a metric learning architecture to verify kinship. Experiments are conducted on the KAN_AV audio dataset.The results demonstrate that the method markedly enhances the accuracy of kinship verification, while also offering novel insights for future kinship verification research.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"301-305"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Audio-Based Kinship Verification Using Age Domain Conversion\",\"authors\":\"Qiyang Sun;Alican Akman;Xin Jing;Manuel Milling;Björn W. Schuller\",\"doi\":\"10.1109/LSP.2024.3515811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio-based kinship verification (AKV) is important in many domains, such as home security monitoring, forensic identification, and social network analysis. A key challenge in the task arises from differences in age across samples from different individuals, which can be interpreted as a domain bias in a cross-domain verification task. To address this issue, we design the notion of an “age-standardised domain” wherein we utilise the optimised CycleGAN-VC3 network to perform age-audio conversion to generate the in-domain audio. The generated audio dataset is employed to extract a range of features, which are then fed into a metric learning architecture to verify kinship. Experiments are conducted on the KAN_AV audio dataset.The results demonstrate that the method markedly enhances the accuracy of kinship verification, while also offering novel insights for future kinship verification research.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"301-305\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10791909/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10791909/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于音频的亲属关系验证(AKV)在许多领域都很重要,如家庭安全监控、法医鉴定和社会网络分析。任务中的一个关键挑战来自不同个体样本的年龄差异,这可以解释为跨域验证任务中的域偏差。为了解决这个问题,我们设计了一个“年龄标准化域”的概念,其中我们利用优化的CycleGAN-VC3网络来执行年龄音频转换以生成域内音频。生成的音频数据集用于提取一系列特征,然后将其输入度量学习架构以验证亲属关系。在KAN_AV音频数据集上进行了实验。结果表明,该方法显著提高了亲属关系验证的准确性,同时也为今后的亲属关系验证研究提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Audio-Based Kinship Verification Using Age Domain Conversion
Audio-based kinship verification (AKV) is important in many domains, such as home security monitoring, forensic identification, and social network analysis. A key challenge in the task arises from differences in age across samples from different individuals, which can be interpreted as a domain bias in a cross-domain verification task. To address this issue, we design the notion of an “age-standardised domain” wherein we utilise the optimised CycleGAN-VC3 network to perform age-audio conversion to generate the in-domain audio. The generated audio dataset is employed to extract a range of features, which are then fed into a metric learning architecture to verify kinship. Experiments are conducted on the KAN_AV audio dataset.The results demonstrate that the method markedly enhances the accuracy of kinship verification, while also offering novel insights for future kinship verification research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Adaptive Superpixel-Guided Non-Homogeneous Image Dehazing Video Inpainting Localization With Contrastive Learning Cross-View Fusion for Multi-View Clustering Piecewise Student's t-distribution Mixture Model-Based Estimation for NAND Flash Memory Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1