血小板膜包被HGF-PLGA纳米颗粒促进缺血性后肢治疗性血管生成和组织灌注恢复。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-01-20 Epub Date: 2024-12-26 DOI:10.1021/acsabm.4c01373
Peng Wang, Xiao Di, Fengshi Li, Zhihua Rong, Wenzhuo Lian, Zongshu Li, Tianqi Chen, Wenjing Wang, Qing Zhong, Guoqiang Sun, Leng Ni, ChangWei Liu
{"title":"血小板膜包被HGF-PLGA纳米颗粒促进缺血性后肢治疗性血管生成和组织灌注恢复。","authors":"Peng Wang, Xiao Di, Fengshi Li, Zhihua Rong, Wenzhuo Lian, Zongshu Li, Tianqi Chen, Wenjing Wang, Qing Zhong, Guoqiang Sun, Leng Ni, ChangWei Liu","doi":"10.1021/acsabm.4c01373","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic angiogenesis has garnered significant attention as a potential treatment strategy for lower limb ischemic diseases. Although hepatocyte growth factor (HGF) has been identified as a key promoter of therapeutic angiogenesis, its clinical application is limited due to its short half-life. In this study, we successfully developed and characterized platelet membrane-coated HGF-poly(lactic-<i>co</i>-glycolic acid) (PLGA) nanoparticles (NPs). These nanoparticles demonstrated enhanced capabilities to promote endothelial cell (EC) proliferation, migration, and tube formation in vitro. Additionally, their efficacy in improving tissue perfusion and promoting angiogenesis was confirmed in a hindlimb ischemia rat model. Our findings suggest that platelet membrane-coated HGF-PLGA-NPs could serve as a promising therapeutic approach for enhancing angiogenesis and restoring tissue perfusion in ischemic conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"399-409"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753260/pdf/","citationCount":"0","resultStr":"{\"title\":\"Platelet Membrane-Coated HGF-PLGA Nanoparticles Promote Therapeutic Angiogenesis and Tissue Perfusion Recovery in Ischemic Hindlimbs.\",\"authors\":\"Peng Wang, Xiao Di, Fengshi Li, Zhihua Rong, Wenzhuo Lian, Zongshu Li, Tianqi Chen, Wenjing Wang, Qing Zhong, Guoqiang Sun, Leng Ni, ChangWei Liu\",\"doi\":\"10.1021/acsabm.4c01373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Therapeutic angiogenesis has garnered significant attention as a potential treatment strategy for lower limb ischemic diseases. Although hepatocyte growth factor (HGF) has been identified as a key promoter of therapeutic angiogenesis, its clinical application is limited due to its short half-life. In this study, we successfully developed and characterized platelet membrane-coated HGF-poly(lactic-<i>co</i>-glycolic acid) (PLGA) nanoparticles (NPs). These nanoparticles demonstrated enhanced capabilities to promote endothelial cell (EC) proliferation, migration, and tube formation in vitro. Additionally, their efficacy in improving tissue perfusion and promoting angiogenesis was confirmed in a hindlimb ischemia rat model. Our findings suggest that platelet membrane-coated HGF-PLGA-NPs could serve as a promising therapeutic approach for enhancing angiogenesis and restoring tissue perfusion in ischemic conditions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"399-409\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.4c01373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

治疗性血管生成作为下肢缺血性疾病的一种潜在治疗策略已经引起了极大的关注。虽然肝细胞生长因子(HGF)已被确定为治疗性血管生成的关键启动子,但由于半衰期短,其临床应用受到限制。在这项研究中,我们成功地开发并表征了血小板膜包被的hgf -聚乳酸-羟基乙酸(PLGA)纳米颗粒(NPs)。在体外实验中,这些纳米颗粒显示出增强的促进内皮细胞(EC)增殖、迁移和管形成的能力。并在后肢缺血大鼠模型中证实了其改善组织灌注和促进血管生成的作用。我们的研究结果表明,血小板膜包被的HGF-PLGA-NPs可以作为一种有希望的治疗方法来促进缺血条件下的血管生成和恢复组织灌注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Platelet Membrane-Coated HGF-PLGA Nanoparticles Promote Therapeutic Angiogenesis and Tissue Perfusion Recovery in Ischemic Hindlimbs.

Therapeutic angiogenesis has garnered significant attention as a potential treatment strategy for lower limb ischemic diseases. Although hepatocyte growth factor (HGF) has been identified as a key promoter of therapeutic angiogenesis, its clinical application is limited due to its short half-life. In this study, we successfully developed and characterized platelet membrane-coated HGF-poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). These nanoparticles demonstrated enhanced capabilities to promote endothelial cell (EC) proliferation, migration, and tube formation in vitro. Additionally, their efficacy in improving tissue perfusion and promoting angiogenesis was confirmed in a hindlimb ischemia rat model. Our findings suggest that platelet membrane-coated HGF-PLGA-NPs could serve as a promising therapeutic approach for enhancing angiogenesis and restoring tissue perfusion in ischemic conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Correction to "Effect of Chirality and Amphiphilicity on the Antimicrobial Activity of Tripodal Lysine-Based Peptides". Harnessing the Efficiency of Twin Boron Nitride and Graphene Monolayers for Anticancer Drug Delivery: Insights from DFT. Construction of Nonenzymatic Flexible Electrochemical Sensor for Glucose Using Bimetallic Copper Ferrite/Sulfur-Doped Graphene Oxide Water-Based Conductive Ink by Noninvasive Method. Nanoparticle-Reinforced Hydrogel with a Well-Defined Pore Structure for Sustainable Drug Release and Effective Wound Healing. A Rhodamine-Based Ratiometric Fluorescent Sensor for Dual-Channel Visible and Near-Infrared Emission Detection of NAD(P)H in Living Cells and Fruit Fly Larvae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1