光激发小檗碱通过聚集和离解状态依赖的分子内电子转移的弛豫过程。

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Photochemical & Photobiological Sciences Pub Date : 2025-01-01 Epub Date: 2024-12-28 DOI:10.1007/s43630-024-00673-9
Kazutaka Hirakawa, Toji Matsuura, Yoshinobu Nishimura, Hakan Mori, Shinsuke Takagi
{"title":"光激发小檗碱通过聚集和离解状态依赖的分子内电子转移的弛豫过程。","authors":"Kazutaka Hirakawa, Toji Matsuura, Yoshinobu Nishimura, Hakan Mori, Shinsuke Takagi","doi":"10.1007/s43630-024-00673-9","DOIUrl":null,"url":null,"abstract":"<p><p>The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.08 ns) was markedly smaller than those of organic solvents and the relative amplitude of the shorter lifetime was dominated in the aqueous solution. Thus, this shorter lifetime can be explained by the deactivation via intramolecular electron transfer. These two states of berberine were independent of pH. The enthalpy and entropy changes between these two states were - 23.2 kJ mol<sup>-1</sup> and - 90 J K<sup>-1</sup> mol<sup>-1</sup>, supporting the aggregation of berberine. In the aggregation state, an electrostatic interaction between cationic berberine and chloride ion decreases the electron accepting ability of the isoquinoline moiety of berberine, resulting in the suppression of intramolecular electron transfer. Furthermore, in the presence of clay, the interaction between berberine and clay increased the fluorescence intensity of berberine and its lifetime, showing that the negative charge of clay suppresses the intramolecular electron transfer. Since the electron transfer quenching of the photo-excited berberine is advantageous for suppressing the phototoxic effect of berberine, the inhibition of berberine aggregation is an important process for the phototoxicity prevention.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"79-87"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer.\",\"authors\":\"Kazutaka Hirakawa, Toji Matsuura, Yoshinobu Nishimura, Hakan Mori, Shinsuke Takagi\",\"doi\":\"10.1007/s43630-024-00673-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.08 ns) was markedly smaller than those of organic solvents and the relative amplitude of the shorter lifetime was dominated in the aqueous solution. Thus, this shorter lifetime can be explained by the deactivation via intramolecular electron transfer. These two states of berberine were independent of pH. The enthalpy and entropy changes between these two states were - 23.2 kJ mol<sup>-1</sup> and - 90 J K<sup>-1</sup> mol<sup>-1</sup>, supporting the aggregation of berberine. In the aggregation state, an electrostatic interaction between cationic berberine and chloride ion decreases the electron accepting ability of the isoquinoline moiety of berberine, resulting in the suppression of intramolecular electron transfer. Furthermore, in the presence of clay, the interaction between berberine and clay increased the fluorescence intensity of berberine and its lifetime, showing that the negative charge of clay suppresses the intramolecular electron transfer. Since the electron transfer quenching of the photo-excited berberine is advantageous for suppressing the phototoxic effect of berberine, the inhibition of berberine aggregation is an important process for the phototoxicity prevention.</p>\",\"PeriodicalId\":98,\"journal\":{\"name\":\"Photochemical & Photobiological Sciences\",\"volume\":\" \",\"pages\":\"79-87\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemical & Photobiological Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s43630-024-00673-9\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00673-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小檗碱在水溶液中的荧光量子产率明显小于有机溶液。用双指数函数分析了黄连素荧光强度的时间分布,表明黄连素在溶液中存在两种状态。短寿命种类的小檗碱在水中的荧光寿命(0.08 ns)明显小于在有机溶剂中的荧光寿命,且短寿命的相对振幅在水溶液中占主导地位。因此,这种较短的寿命可以用分子内电子转移的失活来解释。小檗碱的这两种状态与ph无关,两种状态之间的焓变和熵变分别为- 23.2 kJ mol-1和- 90 jk -1 mol-1,支持小檗碱的聚集。在聚集态下,阳离子小檗碱与氯离子之间的静电相互作用降低了小檗碱的异喹啉部分的电子接受能力,导致分子内电子转移受到抑制。此外,在粘土存在的情况下,小檗碱与粘土的相互作用增加了小檗碱的荧光强度和它的寿命,说明粘土的负电荷抑制了分子内的电子转移。由于光激发小檗碱的电子转移猝灭有利于抑制小檗碱的光毒性作用,因此抑制小檗碱聚集是预防光毒性的重要过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer.

The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.08 ns) was markedly smaller than those of organic solvents and the relative amplitude of the shorter lifetime was dominated in the aqueous solution. Thus, this shorter lifetime can be explained by the deactivation via intramolecular electron transfer. These two states of berberine were independent of pH. The enthalpy and entropy changes between these two states were - 23.2 kJ mol-1 and - 90 J K-1 mol-1, supporting the aggregation of berberine. In the aggregation state, an electrostatic interaction between cationic berberine and chloride ion decreases the electron accepting ability of the isoquinoline moiety of berberine, resulting in the suppression of intramolecular electron transfer. Furthermore, in the presence of clay, the interaction between berberine and clay increased the fluorescence intensity of berberine and its lifetime, showing that the negative charge of clay suppresses the intramolecular electron transfer. Since the electron transfer quenching of the photo-excited berberine is advantageous for suppressing the phototoxic effect of berberine, the inhibition of berberine aggregation is an important process for the phototoxicity prevention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
期刊最新文献
Reactions to disclosed biofeedback information on skin DNA damage in individuals after a beach holiday: a mixed methods intervention study. Solvatochromism and cis-trans isomerism in azobenzene-4-sulfonyl chloride. Seasonal variation in sunlight exposure is differently associated with changes in T regulatory and T-helper 17 cell blood counts in adolescent and adults females: a pilot study. Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction. Divulging the potency of naturally derived photosensitizers in green PDT: an inclusive review Of mechanisms, advantages, and future prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1