杀菌金属-有机镓骨架-合成与应用。

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2025-02-03 Epub Date: 2024-12-27 DOI:10.1021/acs.molpharmaceut.4c01253
Fellype Diorgennes Cordeiro Gomes, Mary Cristina Ferreira Alves, Severino Alves Júnior, Scott H Medina
{"title":"杀菌金属-有机镓骨架-合成与应用。","authors":"Fellype Diorgennes Cordeiro Gomes, Mary Cristina Ferreira Alves, Severino Alves Júnior, Scott H Medina","doi":"10.1021/acs.molpharmaceut.4c01253","DOIUrl":null,"url":null,"abstract":"<p><p>Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations. Gallium MOFs show improved solubility and antibacterial potency relative to the free metal due to their ability to coload antibiotics and functional biomolecules. Synthetic strategies are equally versatile, with several rapid, cost-effective, and scalable methods available. In this review, we present the advantages and disadvantages of these various synthetic strategies with respect to their antibacterial efficiency, product purity, and reaction control. The activity of gallium-based MOFs against Gram-positive and Gram-negative pathogens in mono- and combinatorial therapeutic settings is discussed in the context of their mechanisms of action and structure-function-performance relationships collated from recent studies. While gallium MOF development as antibacterials is still in its nascent stages, the examples discussed here highlight their potential as a novel class of therapeutics poised to impact the fight against pan-drug-resistant bacterial pathogens.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"638-646"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application.\",\"authors\":\"Fellype Diorgennes Cordeiro Gomes, Mary Cristina Ferreira Alves, Severino Alves Júnior, Scott H Medina\",\"doi\":\"10.1021/acs.molpharmaceut.4c01253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations. Gallium MOFs show improved solubility and antibacterial potency relative to the free metal due to their ability to coload antibiotics and functional biomolecules. Synthetic strategies are equally versatile, with several rapid, cost-effective, and scalable methods available. In this review, we present the advantages and disadvantages of these various synthetic strategies with respect to their antibacterial efficiency, product purity, and reaction control. The activity of gallium-based MOFs against Gram-positive and Gram-negative pathogens in mono- and combinatorial therapeutic settings is discussed in the context of their mechanisms of action and structure-function-performance relationships collated from recent studies. While gallium MOF development as antibacterials is still in its nascent stages, the examples discussed here highlight their potential as a novel class of therapeutics poised to impact the fight against pan-drug-resistant bacterial pathogens.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"638-646\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c01253\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01253","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

镓是一种在自然界中不以元素形式存在的微量金属,由于能够干扰细菌中的铁代谢,它作为一种杀菌剂引起了人们极大的兴趣。因此,已经开发和研究了几种镓化合物的抗菌性能,但面临溶解度差和递送配方的挑战。将金属组织成三维混合支架,称为金属有机框架(mof),是一种新兴的平台,具有解决许多这些限制的潜力。与游离金属相比,镓MOFs具有更好的溶解度和抗菌效力,因为它们能够装载抗生素和功能性生物分子。综合策略同样通用,有几种快速、经济、可扩展的方法可用。本文综述了各种合成策略在抗菌效率、产物纯度和反应控制等方面的优缺点。镓基MOFs在单一和组合治疗环境中对革兰氏阳性和革兰氏阴性病原体的活性在其作用机制和结构-功能-性能关系的背景下进行了讨论。虽然镓MOF作为抗菌剂的发展仍处于起步阶段,但本文讨论的例子突出了它们作为一类新型治疗药物的潜力,有望影响对抗泛耐药细菌病原体的斗争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application.

Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations. Gallium MOFs show improved solubility and antibacterial potency relative to the free metal due to their ability to coload antibiotics and functional biomolecules. Synthetic strategies are equally versatile, with several rapid, cost-effective, and scalable methods available. In this review, we present the advantages and disadvantages of these various synthetic strategies with respect to their antibacterial efficiency, product purity, and reaction control. The activity of gallium-based MOFs against Gram-positive and Gram-negative pathogens in mono- and combinatorial therapeutic settings is discussed in the context of their mechanisms of action and structure-function-performance relationships collated from recent studies. While gallium MOF development as antibacterials is still in its nascent stages, the examples discussed here highlight their potential as a novel class of therapeutics poised to impact the fight against pan-drug-resistant bacterial pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Predicting Drug-Polymer Compatibility in Amorphous Solid Dispersions by MD Simulation: On the Trap of Solvation Free Energies. Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application. Comparative Study of Dimeric Fibroblast Activation Protein-Targeting Radioligands Labeled with Fluorine-18, Copper-64, and Gallium-68. Subcutaneous Administration of Therapeutic Monoclonal Antibody Drug Products Using a Syringe in Blinded Clinical Trials: Advances and Key Aspects Related to Blinding/Matching/Masking Strategies for Placebo Formulation. Comparison of a Series of 68Ga-Labeled DOTA-LLP2A Conjugates for Positron Emission Tomography Imaging of Very Late Antigen-4 in Melanoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1