加速抗病毒药物的发现:利用斑马鱼和细胞培养筛选403化合物文库的早期危险检测。

IF 4.8 2区 医学 Q1 TOXICOLOGY Archives of Toxicology Pub Date : 2024-12-27 DOI:10.1007/s00204-024-03948-3
Lisa Truong, Andrew A Bieberich, Raymond O Fatig, Bartek Rajwa, Michael T Simonich, Robyn L Tanguay
{"title":"加速抗病毒药物的发现:利用斑马鱼和细胞培养筛选403化合物文库的早期危险检测。","authors":"Lisa Truong, Andrew A Bieberich, Raymond O Fatig, Bartek Rajwa, Michael T Simonich, Robyn L Tanguay","doi":"10.1007/s00204-024-03948-3","DOIUrl":null,"url":null,"abstract":"<p><p>The constant emergence of new viral pathogens underscores the need for continually evolving, effective antiviral drugs. A key challenge is identifying compounds that are both efficacious and safe, as many candidates fail during development due to unforeseen toxicity. To address this, the embryonic zebrafish morphology, mortality, and behavior (ZBE) screen and the SYSTEMETRIC® Cell Health Screen (CHS) were employed to evaluate the safety of 403 compounds from the Cayman Antiviral Screening Library. Of these compounds, 114 were FDA-approved, 17 were discontinued, and 97 remained on the market. CHS identified 25% (104 compounds) as toxic, with a Cell Health Index™ (CHI) > 0.5. The embryonic zebrafish model identified an additional 20% as toxic (79), bringing the total to 183. ZBEscreen flagged 19 toxic hits among compounds still on the market, seven of which were also identified by CHS. The combined use of CHS and zebrafish models enhanced hazard detection. Together, CHS and ZBEscreen identified 45.5% of the library as potentially hazardous. Notably, the zebrafish non-hazardous compounds correlated strongly with over-the-counter or prescribed antiviral drugs, confirming their known safety profile. Over 130 hazard-associated compounds warranted further investigation. Using self-organizing maps, six distinct neighborhoods of compound similarity were identified. This dual approach streamlined the early detection of hazards associated with promising leads and is expected to facilitate faster, safer antiviral discovery.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating antiviral drug discovery: early hazard detection with a dual zebrafish and cell culture screen of a 403 compound library.\",\"authors\":\"Lisa Truong, Andrew A Bieberich, Raymond O Fatig, Bartek Rajwa, Michael T Simonich, Robyn L Tanguay\",\"doi\":\"10.1007/s00204-024-03948-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The constant emergence of new viral pathogens underscores the need for continually evolving, effective antiviral drugs. A key challenge is identifying compounds that are both efficacious and safe, as many candidates fail during development due to unforeseen toxicity. To address this, the embryonic zebrafish morphology, mortality, and behavior (ZBE) screen and the SYSTEMETRIC® Cell Health Screen (CHS) were employed to evaluate the safety of 403 compounds from the Cayman Antiviral Screening Library. Of these compounds, 114 were FDA-approved, 17 were discontinued, and 97 remained on the market. CHS identified 25% (104 compounds) as toxic, with a Cell Health Index™ (CHI) > 0.5. The embryonic zebrafish model identified an additional 20% as toxic (79), bringing the total to 183. ZBEscreen flagged 19 toxic hits among compounds still on the market, seven of which were also identified by CHS. The combined use of CHS and zebrafish models enhanced hazard detection. Together, CHS and ZBEscreen identified 45.5% of the library as potentially hazardous. Notably, the zebrafish non-hazardous compounds correlated strongly with over-the-counter or prescribed antiviral drugs, confirming their known safety profile. Over 130 hazard-associated compounds warranted further investigation. Using self-organizing maps, six distinct neighborhoods of compound similarity were identified. This dual approach streamlined the early detection of hazards associated with promising leads and is expected to facilitate faster, safer antiviral discovery.</p>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00204-024-03948-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-024-03948-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新的病毒病原体的不断出现强调需要不断发展,有效的抗病毒药物。一个关键的挑战是确定既有效又安全的化合物,因为许多候选化合物在开发过程中由于不可预见的毒性而失败。为了解决这个问题,采用胚胎斑马鱼形态学、死亡率和行为(ZBE)筛选和SYSTEMETRIC®细胞健康筛选(CHS)来评估开曼抗病毒筛选库中的403种化合物的安全性。在这些化合物中,114种已获得fda批准,17种已停产,97种仍在市场上销售。CHS鉴定出25%(104种化合物)是有毒的,细胞健康指数(CHI)为0.5。胚胎斑马鱼模型又鉴定出20%有毒(79种),使总数达到183种。ZBEscreen在仍在市场上销售的化合物中标记了19种有毒物质,其中7种也被CHS识别出来。CHS和斑马鱼模型的联合使用增强了危害检测。CHS和ZBEscreen共同确定了45.5%的图书馆存在潜在危险。值得注意的是,斑马鱼的无害化合物与非处方或处方抗病毒药物密切相关,证实了它们已知的安全性。超过130种与危害有关的化合物值得进一步调查。利用自组织图,确定了6个不同的复合相似邻域。这种双重方法简化了与有希望的线索相关的危险的早期发现,并有望促进更快、更安全的抗病毒药物发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating antiviral drug discovery: early hazard detection with a dual zebrafish and cell culture screen of a 403 compound library.

The constant emergence of new viral pathogens underscores the need for continually evolving, effective antiviral drugs. A key challenge is identifying compounds that are both efficacious and safe, as many candidates fail during development due to unforeseen toxicity. To address this, the embryonic zebrafish morphology, mortality, and behavior (ZBE) screen and the SYSTEMETRIC® Cell Health Screen (CHS) were employed to evaluate the safety of 403 compounds from the Cayman Antiviral Screening Library. Of these compounds, 114 were FDA-approved, 17 were discontinued, and 97 remained on the market. CHS identified 25% (104 compounds) as toxic, with a Cell Health Index™ (CHI) > 0.5. The embryonic zebrafish model identified an additional 20% as toxic (79), bringing the total to 183. ZBEscreen flagged 19 toxic hits among compounds still on the market, seven of which were also identified by CHS. The combined use of CHS and zebrafish models enhanced hazard detection. Together, CHS and ZBEscreen identified 45.5% of the library as potentially hazardous. Notably, the zebrafish non-hazardous compounds correlated strongly with over-the-counter or prescribed antiviral drugs, confirming their known safety profile. Over 130 hazard-associated compounds warranted further investigation. Using self-organizing maps, six distinct neighborhoods of compound similarity were identified. This dual approach streamlined the early detection of hazards associated with promising leads and is expected to facilitate faster, safer antiviral discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
期刊最新文献
Exposure to polystyrene nanoplastics induces lysosomal enlargement and lipid droplet accumulation in KGN human ovarian granulosa cells. Exposure of pregnant and lactating parental mice to aflatoxin B1 promotes hepatotoxicity in offspring mice. Tat_BioV: tattoo ink exposure and biokinetics of selected tracers in a short-term clinical study of 24 subjects. Evaluation of developmental toxicity of chlorpyrifos through new approach methodologies: a systematic review. A physiologically based pharmacokinetic (PBPK) model describing the kinetics of a commercial mixture α-, β-, and γ-hexabromocyclododecane exposure in mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1