Liang Chen, Xuan Hu, Gang Wang, Fang Yu, Zhe Dai, Xiaobin Jian, Yong Li, Wan Xiang, Zhe Meng
{"title":"E3泛素连接酶TRIM2被鉴定为CYP11B2和醛固酮产生的新抑制因子。","authors":"Liang Chen, Xuan Hu, Gang Wang, Fang Yu, Zhe Dai, Xiaobin Jian, Yong Li, Wan Xiang, Zhe Meng","doi":"10.1007/s00018-024-05545-0","DOIUrl":null,"url":null,"abstract":"<p><p>Aldosterone-producing adenoma (APA) is a leading cause of primary aldosteronism (PA), a condition marked by excessive aldosterone secretion. CYP11B2, the aldosterone synthase, plays a critical role in aldosterone biosynthesis and the development of APA. Despite its significance, encoding regulatory mechanisms governing CYP11B2, particularly its degradation, remain poorly understood. In this study, we sought to uncover novel regulators of CYP11B2 stability by conducting a siRNA screen targeting E3 ubiquitin ligases. Our results identified TRIM2 as a key negative regulator of CYP11B2, where its overexpression led to a significant reduction in CYP11B2 protein levels and a concomitant decrease in aldosterone production in adrenal tumor cells. Mechanistically, we demonstrated that TRIM2 interacts with CYP11B2 via its RBCC domain, promoting K29/48-linked polyubiquitination and destabilization of CYP11B2. Further results revealed that TRIM2 is downregulated in APA tissues, showing differential expression between the zona glomerulosa (ZG) and zona fasciculata (ZF) of normal adrenal tissue. These findings highlight TRIM2 as a novel modulator of aldosterone synthesis through CYP11B2 degradation, offering a potential therapeutic target for APA.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"27"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671668/pdf/","citationCount":"0","resultStr":"{\"title\":\"E3 ubiquitin ligase TRIM2 identified as a novel suppressor of CYP11B2 and aldosterone production.\",\"authors\":\"Liang Chen, Xuan Hu, Gang Wang, Fang Yu, Zhe Dai, Xiaobin Jian, Yong Li, Wan Xiang, Zhe Meng\",\"doi\":\"10.1007/s00018-024-05545-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aldosterone-producing adenoma (APA) is a leading cause of primary aldosteronism (PA), a condition marked by excessive aldosterone secretion. CYP11B2, the aldosterone synthase, plays a critical role in aldosterone biosynthesis and the development of APA. Despite its significance, encoding regulatory mechanisms governing CYP11B2, particularly its degradation, remain poorly understood. In this study, we sought to uncover novel regulators of CYP11B2 stability by conducting a siRNA screen targeting E3 ubiquitin ligases. Our results identified TRIM2 as a key negative regulator of CYP11B2, where its overexpression led to a significant reduction in CYP11B2 protein levels and a concomitant decrease in aldosterone production in adrenal tumor cells. Mechanistically, we demonstrated that TRIM2 interacts with CYP11B2 via its RBCC domain, promoting K29/48-linked polyubiquitination and destabilization of CYP11B2. Further results revealed that TRIM2 is downregulated in APA tissues, showing differential expression between the zona glomerulosa (ZG) and zona fasciculata (ZF) of normal adrenal tissue. These findings highlight TRIM2 as a novel modulator of aldosterone synthesis through CYP11B2 degradation, offering a potential therapeutic target for APA.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"82 1\",\"pages\":\"27\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671668/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-024-05545-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05545-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
E3 ubiquitin ligase TRIM2 identified as a novel suppressor of CYP11B2 and aldosterone production.
Aldosterone-producing adenoma (APA) is a leading cause of primary aldosteronism (PA), a condition marked by excessive aldosterone secretion. CYP11B2, the aldosterone synthase, plays a critical role in aldosterone biosynthesis and the development of APA. Despite its significance, encoding regulatory mechanisms governing CYP11B2, particularly its degradation, remain poorly understood. In this study, we sought to uncover novel regulators of CYP11B2 stability by conducting a siRNA screen targeting E3 ubiquitin ligases. Our results identified TRIM2 as a key negative regulator of CYP11B2, where its overexpression led to a significant reduction in CYP11B2 protein levels and a concomitant decrease in aldosterone production in adrenal tumor cells. Mechanistically, we demonstrated that TRIM2 interacts with CYP11B2 via its RBCC domain, promoting K29/48-linked polyubiquitination and destabilization of CYP11B2. Further results revealed that TRIM2 is downregulated in APA tissues, showing differential expression between the zona glomerulosa (ZG) and zona fasciculata (ZF) of normal adrenal tissue. These findings highlight TRIM2 as a novel modulator of aldosterone synthesis through CYP11B2 degradation, offering a potential therapeutic target for APA.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered