Natalia Hermán-Sánchez, Miguel E G-García, Juan M Jiménez-Vacas, Elena M Yubero-Serrano, Laura M López-Sánchez, Sara Romero-Martín, Jose L Raya-Povedano, Marina Álvarez-Benito, Justo P Castaño, Raúl M Luque, Manuel D Gahete
{"title":"剪接机制是失调的,代表了乳腺癌的治疗脆弱性。","authors":"Natalia Hermán-Sánchez, Miguel E G-García, Juan M Jiménez-Vacas, Elena M Yubero-Serrano, Laura M López-Sánchez, Sara Romero-Martín, Jose L Raya-Povedano, Marina Álvarez-Benito, Justo P Castaño, Raúl M Luque, Manuel D Gahete","doi":"10.1007/s00018-024-05515-6","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BCa) is a highly prevalent pathological condition (̴30% in women) with limited and subtype-dependent prognosis and therapeutic options. Therefore, BCa management might benefit from the identification of novel molecular elements with clinical potential. Since splicing process is gaining a great relevance in cancer, this work analysed the expression of multiple Spliceosome Components (SCs = 17) and Splicing Factors (SFs = 26) and found a drastic dysregulation in BCa (n = 69) vs. control (negative biopsies; n = 50) samples. Among all the components analysed, we highlight the upregulation of ESRP1 and down-regulation of PRPF8 and NOVA1 in BCa vs. control samples. Indeed, ESRP1 was specially overexpressed in triple-negative BCa (TNBCa) and associated with worse prognosis (i.e., higher BCa grade and lower overall survival), suggesting an association of ESRP1 with BCa aggressiveness. On the other hand, PRPF8 expression was generally downregulated in BCa with no associations to clinical characteristics, while NOVA1 expression was lower in TNBCa patients and highly aggressive tumours. Consistently, NOVA1 overexpression in vitro reduced functional parameters of aggressiveness in ER-/PR- cell lines (MDA-MB-231 and BT-549) but not in ER+/PR+ cells (MCF7), suggesting a critical role of NOVA1 in subtype-specific BCa. Finally, the in vitro pharmacological inhibition of splicing machinery using pladienolide B decreased aggressiveness features in all the BCa cell lines, showing a subtype-independent inhibitory potential, but being relatively innocuous in normal-like breast cells. These results demonstrate the profound dysregulation of the splicing machinery in BCa and their potential as source of promising diagnosis/prognosis markers, as well as valuable therapeutic targets for BCa.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"18"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671448/pdf/","citationCount":"0","resultStr":"{\"title\":\"The splicing machinery is dysregulated and represents a therapeutic vulnerability in breast cancer.\",\"authors\":\"Natalia Hermán-Sánchez, Miguel E G-García, Juan M Jiménez-Vacas, Elena M Yubero-Serrano, Laura M López-Sánchez, Sara Romero-Martín, Jose L Raya-Povedano, Marina Álvarez-Benito, Justo P Castaño, Raúl M Luque, Manuel D Gahete\",\"doi\":\"10.1007/s00018-024-05515-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer (BCa) is a highly prevalent pathological condition (̴30% in women) with limited and subtype-dependent prognosis and therapeutic options. Therefore, BCa management might benefit from the identification of novel molecular elements with clinical potential. Since splicing process is gaining a great relevance in cancer, this work analysed the expression of multiple Spliceosome Components (SCs = 17) and Splicing Factors (SFs = 26) and found a drastic dysregulation in BCa (n = 69) vs. control (negative biopsies; n = 50) samples. Among all the components analysed, we highlight the upregulation of ESRP1 and down-regulation of PRPF8 and NOVA1 in BCa vs. control samples. Indeed, ESRP1 was specially overexpressed in triple-negative BCa (TNBCa) and associated with worse prognosis (i.e., higher BCa grade and lower overall survival), suggesting an association of ESRP1 with BCa aggressiveness. On the other hand, PRPF8 expression was generally downregulated in BCa with no associations to clinical characteristics, while NOVA1 expression was lower in TNBCa patients and highly aggressive tumours. Consistently, NOVA1 overexpression in vitro reduced functional parameters of aggressiveness in ER-/PR- cell lines (MDA-MB-231 and BT-549) but not in ER+/PR+ cells (MCF7), suggesting a critical role of NOVA1 in subtype-specific BCa. Finally, the in vitro pharmacological inhibition of splicing machinery using pladienolide B decreased aggressiveness features in all the BCa cell lines, showing a subtype-independent inhibitory potential, but being relatively innocuous in normal-like breast cells. These results demonstrate the profound dysregulation of the splicing machinery in BCa and their potential as source of promising diagnosis/prognosis markers, as well as valuable therapeutic targets for BCa.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"82 1\",\"pages\":\"18\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671448/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-024-05515-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05515-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The splicing machinery is dysregulated and represents a therapeutic vulnerability in breast cancer.
Breast cancer (BCa) is a highly prevalent pathological condition (̴30% in women) with limited and subtype-dependent prognosis and therapeutic options. Therefore, BCa management might benefit from the identification of novel molecular elements with clinical potential. Since splicing process is gaining a great relevance in cancer, this work analysed the expression of multiple Spliceosome Components (SCs = 17) and Splicing Factors (SFs = 26) and found a drastic dysregulation in BCa (n = 69) vs. control (negative biopsies; n = 50) samples. Among all the components analysed, we highlight the upregulation of ESRP1 and down-regulation of PRPF8 and NOVA1 in BCa vs. control samples. Indeed, ESRP1 was specially overexpressed in triple-negative BCa (TNBCa) and associated with worse prognosis (i.e., higher BCa grade and lower overall survival), suggesting an association of ESRP1 with BCa aggressiveness. On the other hand, PRPF8 expression was generally downregulated in BCa with no associations to clinical characteristics, while NOVA1 expression was lower in TNBCa patients and highly aggressive tumours. Consistently, NOVA1 overexpression in vitro reduced functional parameters of aggressiveness in ER-/PR- cell lines (MDA-MB-231 and BT-549) but not in ER+/PR+ cells (MCF7), suggesting a critical role of NOVA1 in subtype-specific BCa. Finally, the in vitro pharmacological inhibition of splicing machinery using pladienolide B decreased aggressiveness features in all the BCa cell lines, showing a subtype-independent inhibitory potential, but being relatively innocuous in normal-like breast cells. These results demonstrate the profound dysregulation of the splicing machinery in BCa and their potential as source of promising diagnosis/prognosis markers, as well as valuable therapeutic targets for BCa.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered