内皮细胞对人脑血脑屏障破坏的反应。

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL JCI insight Pub Date : 2024-12-26 DOI:10.1172/jci.insight.187328
Andrew Gould, Yu Luan, Ye Hou, Farida V Korobova, Li Chen, Victor A Arrieta, Christina Amidei, Rachel Ward, Cristal Gomez, Brandyn Castro, Karl Habashy, Daniel Zhang, Mark Youngblood, Crismita Dmello, John Bebawy, Guillaume Bouchoux, Roger Stupp, Michael Canney, Feng Yue, M Luisa Iruela-Arispe, Adam M Sonabend
{"title":"内皮细胞对人脑血脑屏障破坏的反应。","authors":"Andrew Gould, Yu Luan, Ye Hou, Farida V Korobova, Li Chen, Victor A Arrieta, Christina Amidei, Rachel Ward, Cristal Gomez, Brandyn Castro, Karl Habashy, Daniel Zhang, Mark Youngblood, Crismita Dmello, John Bebawy, Guillaume Bouchoux, Roger Stupp, Michael Canney, Feng Yue, M Luisa Iruela-Arispe, Adam M Sonabend","doi":"10.1172/jci.insight.187328","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral endothelial cell (EC) injury and blood-brain barrier (BBB) permeability contribute to neuronal injury in acute neurological disease states. Preclinical experiments have used animal models to study this phenomenon, yet the response of human cerebral ECs to BBB disruption remains unclear. In our Phase 1 clinical trial (NCT04528680), we used low-intensity pulsed ultrasound with microbubbles (LIPU/MB) to induce transient BBB disruption of peri-tumoral brain in patients with recurrent glioblastoma. We found radiographic evidence that BBB integrity was mostly restored within 1-hour of this procedure. Using single-cell RNA sequencing and transmission electron microscopy, we analyzed the acute response of human brain ECs to ultrasound-mediated BBB disruption. Our analysis revealed distinct EC gene expression changes after LIPU/MB, particularly in genes related to neurovascular barrier function and structure, including changes to genes involved in the basement membrane, EC cytoskeleton, and junction complexes, as well as caveolar transcytosis and various solute transporters. Ultrastructural analysis showed that LIPU/MB led to a decrease in luminal caveolae, the emergence of cytoplasmic vacuoles, and the disruption of the basement membrane and tight junctions, among other things. These findings suggested that acute BBB disruption by LIPU/MB led to specific transcriptional and ultrastructural changes and could represent a conserved mechanism of BBB repair after neurovascular injury in humans.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelial Response to Blood-Brain Barrier Disruption in the Human Brain.\",\"authors\":\"Andrew Gould, Yu Luan, Ye Hou, Farida V Korobova, Li Chen, Victor A Arrieta, Christina Amidei, Rachel Ward, Cristal Gomez, Brandyn Castro, Karl Habashy, Daniel Zhang, Mark Youngblood, Crismita Dmello, John Bebawy, Guillaume Bouchoux, Roger Stupp, Michael Canney, Feng Yue, M Luisa Iruela-Arispe, Adam M Sonabend\",\"doi\":\"10.1172/jci.insight.187328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebral endothelial cell (EC) injury and blood-brain barrier (BBB) permeability contribute to neuronal injury in acute neurological disease states. Preclinical experiments have used animal models to study this phenomenon, yet the response of human cerebral ECs to BBB disruption remains unclear. In our Phase 1 clinical trial (NCT04528680), we used low-intensity pulsed ultrasound with microbubbles (LIPU/MB) to induce transient BBB disruption of peri-tumoral brain in patients with recurrent glioblastoma. We found radiographic evidence that BBB integrity was mostly restored within 1-hour of this procedure. Using single-cell RNA sequencing and transmission electron microscopy, we analyzed the acute response of human brain ECs to ultrasound-mediated BBB disruption. Our analysis revealed distinct EC gene expression changes after LIPU/MB, particularly in genes related to neurovascular barrier function and structure, including changes to genes involved in the basement membrane, EC cytoskeleton, and junction complexes, as well as caveolar transcytosis and various solute transporters. Ultrastructural analysis showed that LIPU/MB led to a decrease in luminal caveolae, the emergence of cytoplasmic vacuoles, and the disruption of the basement membrane and tight junctions, among other things. These findings suggested that acute BBB disruption by LIPU/MB led to specific transcriptional and ultrastructural changes and could represent a conserved mechanism of BBB repair after neurovascular injury in humans.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.187328\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.187328","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

脑内皮细胞(EC)损伤和血脑屏障(BBB)通透性与急性神经系统疾病状态下神经元损伤有关。临床前实验已经使用动物模型来研究这一现象,但人类大脑ECs对血脑屏障破坏的反应尚不清楚。在我们的1期临床试验(NCT04528680)中,我们使用低强度脉冲超声与微泡(LIPU/MB)诱导复发性胶质母细胞瘤患者肿瘤周围脑血脑屏障的短暂破坏。我们发现影像学证据表明,手术后1小时内血脑屏障的完整性基本恢复。利用单细胞RNA测序和透射电镜,我们分析了人脑ECs对超声介导的血脑屏障破坏的急性反应。我们的分析显示,LIPU/MB后EC基因的表达发生了明显的变化,特别是与神经血管屏障功能和结构相关的基因,包括涉及基底膜、EC细胞骨架和连接复合物以及腔泡胞吞和各种溶质转运体的基因的变化。超微结构分析显示,LIPU/MB导致管腔小泡减少,细胞质空泡出现,基底膜和紧密连接破坏等。这些发现表明LIPU/MB急性血脑屏障破坏导致特异性转录和超微结构变化,可能代表了人类神经血管损伤后血脑屏障修复的保守机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Endothelial Response to Blood-Brain Barrier Disruption in the Human Brain.

Cerebral endothelial cell (EC) injury and blood-brain barrier (BBB) permeability contribute to neuronal injury in acute neurological disease states. Preclinical experiments have used animal models to study this phenomenon, yet the response of human cerebral ECs to BBB disruption remains unclear. In our Phase 1 clinical trial (NCT04528680), we used low-intensity pulsed ultrasound with microbubbles (LIPU/MB) to induce transient BBB disruption of peri-tumoral brain in patients with recurrent glioblastoma. We found radiographic evidence that BBB integrity was mostly restored within 1-hour of this procedure. Using single-cell RNA sequencing and transmission electron microscopy, we analyzed the acute response of human brain ECs to ultrasound-mediated BBB disruption. Our analysis revealed distinct EC gene expression changes after LIPU/MB, particularly in genes related to neurovascular barrier function and structure, including changes to genes involved in the basement membrane, EC cytoskeleton, and junction complexes, as well as caveolar transcytosis and various solute transporters. Ultrastructural analysis showed that LIPU/MB led to a decrease in luminal caveolae, the emergence of cytoplasmic vacuoles, and the disruption of the basement membrane and tight junctions, among other things. These findings suggested that acute BBB disruption by LIPU/MB led to specific transcriptional and ultrastructural changes and could represent a conserved mechanism of BBB repair after neurovascular injury in humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
期刊最新文献
First-in-human trial of engineered NK cells in lung cancer refractory to immune checkpoint inhibitors. A randomized, double-blind, placebo controlled trial of IL-7 in critically ill COVID-19 patients. Characterization of the vaginal microbiome of postmenopausal patients receiving chemoradiation for locally advanced cervical cancer. Interleukin-21 and anti-α4β7 dual therapy during ART promotes immunological and microbiome responses in SIV-infected macaques. Molecular control of PDPNhi macrophage subset induction by ADAP as a host defense in sepsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1