更正:曲安奈德通过激活小胶质细胞中的抗炎STAT6/Arg1信号来防止光诱导的视网膜变性。

IF 4.5 2区 医学 Q2 CELL BIOLOGY Inflammation Pub Date : 2024-12-27 DOI:10.1007/s10753-024-02224-x
Xiangcheng Tang, Wei Liu, Jia Liang, Xingfei Zhu, Xiangyu Ge, Dong Fang, Lirong Ling, Fanglan Yuan, Kun Zeng, Qingshan Chen, Guoming Zhang, Lili Gong, Shaochong Zhang
{"title":"更正:曲安奈德通过激活小胶质细胞中的抗炎STAT6/Arg1信号来防止光诱导的视网膜变性。","authors":"Xiangcheng Tang, Wei Liu, Jia Liang, Xingfei Zhu, Xiangyu Ge, Dong Fang, Lirong Ling, Fanglan Yuan, Kun Zeng, Qingshan Chen, Guoming Zhang, Lili Gong, Shaochong Zhang","doi":"10.1007/s10753-024-02224-x","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia are highly specialized resident macrophages in the central nervous system that play a pivotal role in modulating neuroinflammation. Microglial plasticity is essential for their function, allowing them to polarize into proinflammatory M1-like or anti-inflammatory M2-like phenotypes. However, the mechanisms driving M1 and M2 microglial induction during retinal degeneration remain largely unexplored. In addition, drugs that regulate retinal microglial polarity have not been fully investigated. The synthetic glucocorticoid triamcinolone acetonide (TA) is widely utilized in ophthalmology clinics for its anti-inflammatory properties. Here, we investigated microglial polarity in a light-induced retinal degeneration mouse model, along with the effects and mechanisms of intravitreal injection of TA on microglial polarity, retinal inflammation, and visual function following light damage (LD). Our findings demonstrated that LD induced a pro-inflammatory M1 microglial signature, with levels of M1 marker proteins in the retina increasing in a time-dependent manner following LD. Intravitreal TA treatment mitigated LD-induced retinal inflammation, photoreceptor death, and retinal blood vessel leakage, and preserved retinal responsiveness to light stimuli. Mechanistically, TA suppressed the proinflammatory microglial phenotype while promoting the anti-inflammatory phenotype by activating the signal transducer and activator of transcription 6/arginase1 (STAT6/Arg1) signaling pathway. These results reveal a new mechanism by which TA protects the retina from LD by shifting microglia toward an anti-inflammatory state through the STAT6/Arg1 axis.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction to: Triamcinolone Acetonide Protects Against Light-Induced Retinal Degeneration by Activating Anti-Inflammatory STAT6/Arg1 Signaling in Microglia.\",\"authors\":\"Xiangcheng Tang, Wei Liu, Jia Liang, Xingfei Zhu, Xiangyu Ge, Dong Fang, Lirong Ling, Fanglan Yuan, Kun Zeng, Qingshan Chen, Guoming Zhang, Lili Gong, Shaochong Zhang\",\"doi\":\"10.1007/s10753-024-02224-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microglia are highly specialized resident macrophages in the central nervous system that play a pivotal role in modulating neuroinflammation. Microglial plasticity is essential for their function, allowing them to polarize into proinflammatory M1-like or anti-inflammatory M2-like phenotypes. However, the mechanisms driving M1 and M2 microglial induction during retinal degeneration remain largely unexplored. In addition, drugs that regulate retinal microglial polarity have not been fully investigated. The synthetic glucocorticoid triamcinolone acetonide (TA) is widely utilized in ophthalmology clinics for its anti-inflammatory properties. Here, we investigated microglial polarity in a light-induced retinal degeneration mouse model, along with the effects and mechanisms of intravitreal injection of TA on microglial polarity, retinal inflammation, and visual function following light damage (LD). Our findings demonstrated that LD induced a pro-inflammatory M1 microglial signature, with levels of M1 marker proteins in the retina increasing in a time-dependent manner following LD. Intravitreal TA treatment mitigated LD-induced retinal inflammation, photoreceptor death, and retinal blood vessel leakage, and preserved retinal responsiveness to light stimuli. Mechanistically, TA suppressed the proinflammatory microglial phenotype while promoting the anti-inflammatory phenotype by activating the signal transducer and activator of transcription 6/arginase1 (STAT6/Arg1) signaling pathway. These results reveal a new mechanism by which TA protects the retina from LD by shifting microglia toward an anti-inflammatory state through the STAT6/Arg1 axis.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02224-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02224-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小胶质细胞是中枢神经系统中高度特化的巨噬细胞,在调节神经炎症中起着关键作用。小胶质细胞的可塑性对其功能至关重要,使其分化为促炎m1样或抗炎m2样表型。然而,在视网膜变性过程中驱动M1和M2小胶质细胞诱导的机制在很大程度上仍未被探索。此外,调节视网膜小胶质细胞极性的药物尚未得到充分研究。合成糖皮质激素曲安奈德(triamcinolone acetonide, TA)因其抗炎特性被广泛应用于眼科临床。在这里,我们研究了光诱导视网膜变性小鼠模型中的小胶质细胞极性,以及玻璃体内注射TA对光损伤(LD)后小胶质细胞极性、视网膜炎症和视觉功能的影响和机制。我们的研究结果表明,LD诱导了促炎性M1小胶质细胞特征,视网膜中M1标记蛋白的水平在LD后以时间依赖性的方式增加。玻璃体内TA治疗减轻了LD诱导的视网膜炎症、光感受器死亡和视网膜血管渗漏,并保持了视网膜对光刺激的反应性。机制上,TA通过激活转录6/精氨酸酶1 (STAT6/Arg1)信号通路,抑制促炎小胶质细胞表型,促进抗炎表型。这些结果揭示了TA通过STAT6/Arg1轴将小胶质细胞转变为抗炎状态来保护视网膜免受LD的新机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correction to: Triamcinolone Acetonide Protects Against Light-Induced Retinal Degeneration by Activating Anti-Inflammatory STAT6/Arg1 Signaling in Microglia.

Microglia are highly specialized resident macrophages in the central nervous system that play a pivotal role in modulating neuroinflammation. Microglial plasticity is essential for their function, allowing them to polarize into proinflammatory M1-like or anti-inflammatory M2-like phenotypes. However, the mechanisms driving M1 and M2 microglial induction during retinal degeneration remain largely unexplored. In addition, drugs that regulate retinal microglial polarity have not been fully investigated. The synthetic glucocorticoid triamcinolone acetonide (TA) is widely utilized in ophthalmology clinics for its anti-inflammatory properties. Here, we investigated microglial polarity in a light-induced retinal degeneration mouse model, along with the effects and mechanisms of intravitreal injection of TA on microglial polarity, retinal inflammation, and visual function following light damage (LD). Our findings demonstrated that LD induced a pro-inflammatory M1 microglial signature, with levels of M1 marker proteins in the retina increasing in a time-dependent manner following LD. Intravitreal TA treatment mitigated LD-induced retinal inflammation, photoreceptor death, and retinal blood vessel leakage, and preserved retinal responsiveness to light stimuli. Mechanistically, TA suppressed the proinflammatory microglial phenotype while promoting the anti-inflammatory phenotype by activating the signal transducer and activator of transcription 6/arginase1 (STAT6/Arg1) signaling pathway. These results reveal a new mechanism by which TA protects the retina from LD by shifting microglia toward an anti-inflammatory state through the STAT6/Arg1 axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
期刊最新文献
Exploration of the Combined Mechanism of Direct and Indirect Effects of Paeoniflorin in the Treatment of Cholestasis. Kurarinone Mitigates LPS-Induced Inflammatory Osteolysis by Inhibiting Osteoclastogenesis Through the Reduction of ROS Levels and Suppression of the PI3K/AKT Signaling Pathway. KW-2449 Ameliorates Cardiac Dysfunction in a Rat Model of Sepsis-Induced Cardiomyopathy. Mitigation of Neuroinflammation and Oxidative Stress in Rotenone-Induced Parkinson Mouse Model through Liposomal Coenzyme-Q10 Intervention: A Comprehensive In-vivo Study. Toll-like Receptors 1, 3 and 7 Activate Distinct Genetic Features of NF-κB Signaling and γ-Protocadherin Expression in Human Cardiac Fibroblasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1