Xiujuan Zhao, Minghui Xia, Zhengxin Peng, Qiuyang Du, Yang Liu, Yu Xia, Panjing Lv, Xiao Zhang, Shijie Yuan, Xiaorong Xie, Jing Wang, Shuguo Sun, Xiang-Ping Yang, Ran He
{"title":"TFEB相分离介导间歇性禁食对炎性结肠炎的改善作用。","authors":"Xiujuan Zhao, Minghui Xia, Zhengxin Peng, Qiuyang Du, Yang Liu, Yu Xia, Panjing Lv, Xiao Zhang, Shijie Yuan, Xiaorong Xie, Jing Wang, Shuguo Sun, Xiang-Ping Yang, Ran He","doi":"10.1007/s10753-024-02202-3","DOIUrl":null,"url":null,"abstract":"<p><p>Intermittent fasting (IF) has been shown to ameliorate inflammation including DSS-induced colitis. It is well known that autophagy can limit inflammation and TFEB is a master transcriptional factor that regulates the processes of autophagy. However, whether TFEB is involved in the regulation of IF-mediated amelioration of inflammation and its mechanism remained unclear. In this study, we found that IF ameliorated DSS-induced colitis and induced TFEB. Nutrition deprivation induced TFEB puncta formation, which processes the characteristics of liquid-liquid phase separation (LLPS) showed by fluorescence recovery after photobleaching (FRAP) assay and 1,6-hexanediol treatment. We found the 24-33 amino acids of Coiled-Coil (CC) domain located in N terminus is essential for TFEB phase separation. Deletion of 24-33 amino acids within the CC domain inhibited TFEB-mediated target gene expression. In addition, we found transcription co-activators, EP300 and MED1, co-localized with TFEB condensate to formed a transcriptional hub that promotes the efficient expression of target genes. More importantly, TFEB inhibitor with ability to suppress TFEB puncta formation abolished the IF-mediated amelioration of DSS colitis. Together, these findings revealed a critical role of TFEB phase separation in the regulation of its transcriptional activity and anti-inflammatory functions induced by IF.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TFEB Phase Separation Mediates the Amelioration Effect of Intermittent Fasting on Inflammatory Colitis.\",\"authors\":\"Xiujuan Zhao, Minghui Xia, Zhengxin Peng, Qiuyang Du, Yang Liu, Yu Xia, Panjing Lv, Xiao Zhang, Shijie Yuan, Xiaorong Xie, Jing Wang, Shuguo Sun, Xiang-Ping Yang, Ran He\",\"doi\":\"10.1007/s10753-024-02202-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intermittent fasting (IF) has been shown to ameliorate inflammation including DSS-induced colitis. It is well known that autophagy can limit inflammation and TFEB is a master transcriptional factor that regulates the processes of autophagy. However, whether TFEB is involved in the regulation of IF-mediated amelioration of inflammation and its mechanism remained unclear. In this study, we found that IF ameliorated DSS-induced colitis and induced TFEB. Nutrition deprivation induced TFEB puncta formation, which processes the characteristics of liquid-liquid phase separation (LLPS) showed by fluorescence recovery after photobleaching (FRAP) assay and 1,6-hexanediol treatment. We found the 24-33 amino acids of Coiled-Coil (CC) domain located in N terminus is essential for TFEB phase separation. Deletion of 24-33 amino acids within the CC domain inhibited TFEB-mediated target gene expression. In addition, we found transcription co-activators, EP300 and MED1, co-localized with TFEB condensate to formed a transcriptional hub that promotes the efficient expression of target genes. More importantly, TFEB inhibitor with ability to suppress TFEB puncta formation abolished the IF-mediated amelioration of DSS colitis. Together, these findings revealed a critical role of TFEB phase separation in the regulation of its transcriptional activity and anti-inflammatory functions induced by IF.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02202-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02202-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
TFEB Phase Separation Mediates the Amelioration Effect of Intermittent Fasting on Inflammatory Colitis.
Intermittent fasting (IF) has been shown to ameliorate inflammation including DSS-induced colitis. It is well known that autophagy can limit inflammation and TFEB is a master transcriptional factor that regulates the processes of autophagy. However, whether TFEB is involved in the regulation of IF-mediated amelioration of inflammation and its mechanism remained unclear. In this study, we found that IF ameliorated DSS-induced colitis and induced TFEB. Nutrition deprivation induced TFEB puncta formation, which processes the characteristics of liquid-liquid phase separation (LLPS) showed by fluorescence recovery after photobleaching (FRAP) assay and 1,6-hexanediol treatment. We found the 24-33 amino acids of Coiled-Coil (CC) domain located in N terminus is essential for TFEB phase separation. Deletion of 24-33 amino acids within the CC domain inhibited TFEB-mediated target gene expression. In addition, we found transcription co-activators, EP300 and MED1, co-localized with TFEB condensate to formed a transcriptional hub that promotes the efficient expression of target genes. More importantly, TFEB inhibitor with ability to suppress TFEB puncta formation abolished the IF-mediated amelioration of DSS colitis. Together, these findings revealed a critical role of TFEB phase separation in the regulation of its transcriptional activity and anti-inflammatory functions induced by IF.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.