Chang Li, Zhen Ma, Xiang Wei, Ying Wang, Jian Wu, Xuan Li, Xiaolei Sun, Zhiwen Ding, Cheng Yang, Yunzeng Zou
{"title":"蟾毒灵通过P62途径抑制巨噬细胞焦亡改善心肌缺血再灌注损伤","authors":"Chang Li, Zhen Ma, Xiang Wei, Ying Wang, Jian Wu, Xuan Li, Xiaolei Sun, Zhiwen Ding, Cheng Yang, Yunzeng Zou","doi":"10.1007/s12265-024-10577-9","DOIUrl":null,"url":null,"abstract":"<p><p>Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis. The levels of pyroptotic proteins were increased in I/R-treated macrophages and inflammatory cytokines expressed more in I/R-induced mouse, which could be attenuated by bufalin. Bufalin also reduced H/R-treated macrophage pyroptosis in vitro. Autophagic flux blockage and ROS accumulation were reduced by bufalin in impaired macrophages. Overexpression of p62 abrogated the anti-proptosis and anti-oxidative effects of bufalin. The levels of apoptosis related proteins were changed and TUNEL-positive ratio was raised in cardiomyocytes that received conditioned medium treatment with H/R-treated macrophages, while bufalin pretreatment could reduce apoptosis. These findings indicate that bufalin may attenuate myocardial I/R injury by suppressing macrophage pyroptosis via P62 pathway.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway.\",\"authors\":\"Chang Li, Zhen Ma, Xiang Wei, Ying Wang, Jian Wu, Xuan Li, Xiaolei Sun, Zhiwen Ding, Cheng Yang, Yunzeng Zou\",\"doi\":\"10.1007/s12265-024-10577-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis. The levels of pyroptotic proteins were increased in I/R-treated macrophages and inflammatory cytokines expressed more in I/R-induced mouse, which could be attenuated by bufalin. Bufalin also reduced H/R-treated macrophage pyroptosis in vitro. Autophagic flux blockage and ROS accumulation were reduced by bufalin in impaired macrophages. Overexpression of p62 abrogated the anti-proptosis and anti-oxidative effects of bufalin. The levels of apoptosis related proteins were changed and TUNEL-positive ratio was raised in cardiomyocytes that received conditioned medium treatment with H/R-treated macrophages, while bufalin pretreatment could reduce apoptosis. These findings indicate that bufalin may attenuate myocardial I/R injury by suppressing macrophage pyroptosis via P62 pathway.</p>\",\"PeriodicalId\":15224,\"journal\":{\"name\":\"Journal of Cardiovascular Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12265-024-10577-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12265-024-10577-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway.
Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis. The levels of pyroptotic proteins were increased in I/R-treated macrophages and inflammatory cytokines expressed more in I/R-induced mouse, which could be attenuated by bufalin. Bufalin also reduced H/R-treated macrophage pyroptosis in vitro. Autophagic flux blockage and ROS accumulation were reduced by bufalin in impaired macrophages. Overexpression of p62 abrogated the anti-proptosis and anti-oxidative effects of bufalin. The levels of apoptosis related proteins were changed and TUNEL-positive ratio was raised in cardiomyocytes that received conditioned medium treatment with H/R-treated macrophages, while bufalin pretreatment could reduce apoptosis. These findings indicate that bufalin may attenuate myocardial I/R injury by suppressing macrophage pyroptosis via P62 pathway.
期刊介绍:
Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research.
JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials.
JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.