Di Wu, Ye Yao, Carolina Cecilia Cifuentes-Jimenez, Hidehiko Sano, Pedro Álvarez-Lloret, Monica Yamauti, Atsushi Tomokiyo
{"title":"通用胶粘剂的长期牙本质粘接性能:HEMA含量和生物活性树脂复合材料的影响。","authors":"Di Wu, Ye Yao, Carolina Cecilia Cifuentes-Jimenez, Hidehiko Sano, Pedro Álvarez-Lloret, Monica Yamauti, Atsushi Tomokiyo","doi":"10.3390/jfb15120379","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used. Teeth were restored with Beautifil Flow Plus F00 with S-PRG filler (BFP) and flowable resin composite with silica filler (E-BFP). μTBS was evaluated after 24 h and 6 months of water storage. WS and SL measurement followed ISO 4049:2019; spectroscopy measured DC; ICP-MS evaluated ion release. BBX and FBII presented the highest DC. The adhesives did not comply with the WS ISO requirements, but the bonding resin of 2-SEAs complied with the SL threshold. BFP released more ions than E-BFP. BFP positively affected the μTBS of UAs, regardless of HEMA concentration after 24 h, comparable to the 2-SEAs. The 6 months μTBS decrease depended on the adhesive and RC combination. HEMA did not affect the μTBS of UAs, while bioactive resins had a positive impact.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677732/pdf/","citationCount":"0","resultStr":"{\"title\":\"Long-Term Dentin Bonding Performance of Universal Adhesives: The Effect of HEMA Content and Bioactive Resin Composite.\",\"authors\":\"Di Wu, Ye Yao, Carolina Cecilia Cifuentes-Jimenez, Hidehiko Sano, Pedro Álvarez-Lloret, Monica Yamauti, Atsushi Tomokiyo\",\"doi\":\"10.3390/jfb15120379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used. Teeth were restored with Beautifil Flow Plus F00 with S-PRG filler (BFP) and flowable resin composite with silica filler (E-BFP). μTBS was evaluated after 24 h and 6 months of water storage. WS and SL measurement followed ISO 4049:2019; spectroscopy measured DC; ICP-MS evaluated ion release. BBX and FBII presented the highest DC. The adhesives did not comply with the WS ISO requirements, but the bonding resin of 2-SEAs complied with the SL threshold. BFP released more ions than E-BFP. BFP positively affected the μTBS of UAs, regardless of HEMA concentration after 24 h, comparable to the 2-SEAs. The 6 months μTBS decrease depended on the adhesive and RC combination. HEMA did not affect the μTBS of UAs, while bioactive resins had a positive impact.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677732/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15120379\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15120379","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
研究了含表面预反应玻璃离子(S-PRG)填料的树脂复合材料(rc)对无hema和含hema通用胶粘剂(UAs)牙本质微拉伸结合强度(μTBS)的影响。测定了其吸水性(WS)、溶解度(SL)、转化率(DC)和离子释放量。美妆美妆极致版(BBX;0% HEMA),改性胶粘剂-1 (E-BBX1;5% HEMA),改性胶粘剂-2 (E-BBX2;10% HEMA)和两种两步自蚀刻粘合剂(2-SEAs): FL-BOND II (FBII;采用S-PRG填料)和含硅胶粘剂(E-FBII)。采用美盈Flow Plus F00 (S-PRG填料)和可流动树脂复合材料(E-BFP)修复牙体。贮藏24 h和6个月后测定μTBS。WS和SL测量遵循ISO 4049:2019;光谱测量直流电;ICP-MS评价离子释放。BBX和FBII的DC最高。胶粘剂不符合WS ISO要求,但2-SEAs的粘接树脂符合SL阈值。BFP比E-BFP释放更多的离子。24 h后,无论HEMA浓度如何,BFP均对UAs的μTBS有正向影响,与2-SEAs相当。6个月μTBS的下降取决于胶粘剂和RC的组合。HEMA对UAs的μTBS没有影响,而生物活性树脂对UAs的μTBS有积极影响。
Long-Term Dentin Bonding Performance of Universal Adhesives: The Effect of HEMA Content and Bioactive Resin Composite.
This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used. Teeth were restored with Beautifil Flow Plus F00 with S-PRG filler (BFP) and flowable resin composite with silica filler (E-BFP). μTBS was evaluated after 24 h and 6 months of water storage. WS and SL measurement followed ISO 4049:2019; spectroscopy measured DC; ICP-MS evaluated ion release. BBX and FBII presented the highest DC. The adhesives did not comply with the WS ISO requirements, but the bonding resin of 2-SEAs complied with the SL threshold. BFP released more ions than E-BFP. BFP positively affected the μTBS of UAs, regardless of HEMA concentration after 24 h, comparable to the 2-SEAs. The 6 months μTBS decrease depended on the adhesive and RC combination. HEMA did not affect the μTBS of UAs, while bioactive resins had a positive impact.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.