Iosif-Aliodor Timofticiuc, Serban Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Ioana Anca Badarau, Nicolae Dragos Garofil, Andreea Cristiana Didilescu, Constantin Caruntu, Cristian Scheau
{"title":"3D生物打印在肢体保留手术中的应用。","authors":"Iosif-Aliodor Timofticiuc, Serban Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Ioana Anca Badarau, Nicolae Dragos Garofil, Andreea Cristiana Didilescu, Constantin Caruntu, Cristian Scheau","doi":"10.3390/jfb15120383","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine. The preliminary results of 3D bioprinting in one of the most challenging fields in surgery are promising for the future of machine-based medicine, but also for the possibility of replacing various parts from the human body with bioactive-based constructs. In addition, besides the materials and constructs that are already tested and applied in the human body, we also reviewed bioactive materials undergoing in vitro or in vivo testing with great potential for human applications in the near future. Also, we explored the recent advancements in clinically available 3D-bioprinted constructs and their relevance in this field.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677104/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D Bioprinting in Limb Salvage Surgery.\",\"authors\":\"Iosif-Aliodor Timofticiuc, Serban Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Ioana Anca Badarau, Nicolae Dragos Garofil, Andreea Cristiana Didilescu, Constantin Caruntu, Cristian Scheau\",\"doi\":\"10.3390/jfb15120383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine. The preliminary results of 3D bioprinting in one of the most challenging fields in surgery are promising for the future of machine-based medicine, but also for the possibility of replacing various parts from the human body with bioactive-based constructs. In addition, besides the materials and constructs that are already tested and applied in the human body, we also reviewed bioactive materials undergoing in vitro or in vivo testing with great potential for human applications in the near future. Also, we explored the recent advancements in clinically available 3D-bioprinted constructs and their relevance in this field.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15120383\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15120383","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine. The preliminary results of 3D bioprinting in one of the most challenging fields in surgery are promising for the future of machine-based medicine, but also for the possibility of replacing various parts from the human body with bioactive-based constructs. In addition, besides the materials and constructs that are already tested and applied in the human body, we also reviewed bioactive materials undergoing in vitro or in vivo testing with great potential for human applications in the near future. Also, we explored the recent advancements in clinically available 3D-bioprinted constructs and their relevance in this field.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.