3D生物打印在肢体保留手术中的应用。

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of Functional Biomaterials Pub Date : 2024-12-19 DOI:10.3390/jfb15120383
Iosif-Aliodor Timofticiuc, Serban Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Ioana Anca Badarau, Nicolae Dragos Garofil, Andreea Cristiana Didilescu, Constantin Caruntu, Cristian Scheau
{"title":"3D生物打印在肢体保留手术中的应用。","authors":"Iosif-Aliodor Timofticiuc, Serban Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Ioana Anca Badarau, Nicolae Dragos Garofil, Andreea Cristiana Didilescu, Constantin Caruntu, Cristian Scheau","doi":"10.3390/jfb15120383","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine. The preliminary results of 3D bioprinting in one of the most challenging fields in surgery are promising for the future of machine-based medicine, but also for the possibility of replacing various parts from the human body with bioactive-based constructs. In addition, besides the materials and constructs that are already tested and applied in the human body, we also reviewed bioactive materials undergoing in vitro or in vivo testing with great potential for human applications in the near future. Also, we explored the recent advancements in clinically available 3D-bioprinted constructs and their relevance in this field.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677104/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D Bioprinting in Limb Salvage Surgery.\",\"authors\":\"Iosif-Aliodor Timofticiuc, Serban Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Ioana Anca Badarau, Nicolae Dragos Garofil, Andreea Cristiana Didilescu, Constantin Caruntu, Cristian Scheau\",\"doi\":\"10.3390/jfb15120383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine. The preliminary results of 3D bioprinting in one of the most challenging fields in surgery are promising for the future of machine-based medicine, but also for the possibility of replacing various parts from the human body with bioactive-based constructs. In addition, besides the materials and constructs that are already tested and applied in the human body, we also reviewed bioactive materials undergoing in vitro or in vivo testing with great potential for human applications in the near future. Also, we explored the recent advancements in clinically available 3D-bioprinted constructs and their relevance in this field.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15120383\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15120383","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着3D生物打印技术的发展和创新生物相容性材料的创造,一些新的方法为患者和手术团队带来了优势。现在越来越多的骨缺损使用3d生物打印假体治疗,实施新的解决方案依赖于工程师和医疗团队的能力,以确定固定3d打印假体的方法,并揭示生物活性材料对周围组织的潜在影响。在本文中,我们描述了为什么基于3D生物打印的肢体保留手术是一种可靠和有效的截肢替代方法,以及为什么这种方法被认为是现代医学的新标准。3D生物打印是外科手术中最具挑战性的领域之一,其初步结果为未来的机器医学带来了希望,同时也为用生物活性结构代替人体各种部位提供了可能性。此外,除了已经在人体中测试和应用的材料和结构外,我们还对正在进行体外或体内测试的生物活性材料进行了综述,这些材料在不久的将来具有很大的人体应用潜力。此外,我们还探讨了临床上可用的3d生物打印结构的最新进展及其在该领域的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Bioprinting in Limb Salvage Surgery.

With the development of 3D bioprinting and the creation of innovative biocompatible materials, several new approaches have brought advantages to patients and surgical teams. Increasingly more bone defects are now treated using 3D-bioprinted prostheses and implementing new solutions relies on the ability of engineers and medical teams to identify methods of anchoring 3D-printed prostheses and to reveal the potential influence of bioactive materials on surrounding tissues. In this paper, we described why limb salvage surgery based on 3D bioprinting is a reliable and effective alternative to amputations, and why this approach is considered the new standard in modern medicine. The preliminary results of 3D bioprinting in one of the most challenging fields in surgery are promising for the future of machine-based medicine, but also for the possibility of replacing various parts from the human body with bioactive-based constructs. In addition, besides the materials and constructs that are already tested and applied in the human body, we also reviewed bioactive materials undergoing in vitro or in vivo testing with great potential for human applications in the near future. Also, we explored the recent advancements in clinically available 3D-bioprinted constructs and their relevance in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
期刊最新文献
Preventing Oral Dual Biofilm Development with Innovative Bioactive Varnishes. Schiff Base-Crosslinked Tetra-PEG-BSA Hydrogel: Design, Properties, and Multifunctional Functions. The Relationship Between Peri-Implant Marginal Bone Loss and Resonance Frequency Analysis. Bisphenol A Release from Fiber-Reinforced vs. Conventional Stainless-Steel Fixed Retainers: An In Vitro Study. Effect of Sequential vs. Simultaneous Dual Growth Factor Release from Structured Heparin-Poly-Electrolyte Multilayer Coatings on Peri-Implant Bone Formation and Angiogenesis in Pig Mandibles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1