{"title":"IR-783脂质体光动力疗法治疗人类晚期舌癌和乳腺癌。","authors":"Yasuo Komura, Shintarou Kimura, Yumi Hirasawa, Tomoko Katagiri, Ayana Takaura, Fumika Yoshida, Saki Fukuro, Hiromi Muranishi, Osamu Imataki, Koichiro Homma","doi":"10.3390/jfb15120363","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a minimally invasive treatment that elicits tumor apoptosis using laser light exclusively applied to the tumor site. IR-783, a heptamethine cyanine (HMC) dye, impedes the proliferation of breast cancer cells, even without light. Although studies have investigated the efficacy of IR-783 in cell and animal studies, its efficacy in clinical settings remains unknown. Therefore, we aimed to determine the efficacy of PDT using IR-783 liposomes. An HMC dye, excited by long-wavelength infrared light and with high tissue permeability, was used for PDT after liposomization to enhance tumor tissue accumulation. PDT was performed using IR-783 in two patients with either tongue or breast cancer, one each. IR-783 liposomes inhibited cell proliferation in tongue cancer cells even when not excited by light. Tumor size was markedly reduced in both cases, with no significant adverse events. Furthermore, the patient with tongue cancer exhibited improved respiratory, swallowing, and speech functions, which were attributed not only to the shrinkage of the tumor but also to the improvement in airway narrowing. In conclusion, PDT using IR-783 liposomes effectively reduces tumor size in tongue and breast cancers.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678438/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photodynamic Therapy Using IR-783 Liposomes for Advanced Tongue and Breast Cancers in Humans.\",\"authors\":\"Yasuo Komura, Shintarou Kimura, Yumi Hirasawa, Tomoko Katagiri, Ayana Takaura, Fumika Yoshida, Saki Fukuro, Hiromi Muranishi, Osamu Imataki, Koichiro Homma\",\"doi\":\"10.3390/jfb15120363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) is a minimally invasive treatment that elicits tumor apoptosis using laser light exclusively applied to the tumor site. IR-783, a heptamethine cyanine (HMC) dye, impedes the proliferation of breast cancer cells, even without light. Although studies have investigated the efficacy of IR-783 in cell and animal studies, its efficacy in clinical settings remains unknown. Therefore, we aimed to determine the efficacy of PDT using IR-783 liposomes. An HMC dye, excited by long-wavelength infrared light and with high tissue permeability, was used for PDT after liposomization to enhance tumor tissue accumulation. PDT was performed using IR-783 in two patients with either tongue or breast cancer, one each. IR-783 liposomes inhibited cell proliferation in tongue cancer cells even when not excited by light. Tumor size was markedly reduced in both cases, with no significant adverse events. Furthermore, the patient with tongue cancer exhibited improved respiratory, swallowing, and speech functions, which were attributed not only to the shrinkage of the tumor but also to the improvement in airway narrowing. In conclusion, PDT using IR-783 liposomes effectively reduces tumor size in tongue and breast cancers.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678438/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15120363\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15120363","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Photodynamic Therapy Using IR-783 Liposomes for Advanced Tongue and Breast Cancers in Humans.
Photodynamic therapy (PDT) is a minimally invasive treatment that elicits tumor apoptosis using laser light exclusively applied to the tumor site. IR-783, a heptamethine cyanine (HMC) dye, impedes the proliferation of breast cancer cells, even without light. Although studies have investigated the efficacy of IR-783 in cell and animal studies, its efficacy in clinical settings remains unknown. Therefore, we aimed to determine the efficacy of PDT using IR-783 liposomes. An HMC dye, excited by long-wavelength infrared light and with high tissue permeability, was used for PDT after liposomization to enhance tumor tissue accumulation. PDT was performed using IR-783 in two patients with either tongue or breast cancer, one each. IR-783 liposomes inhibited cell proliferation in tongue cancer cells even when not excited by light. Tumor size was markedly reduced in both cases, with no significant adverse events. Furthermore, the patient with tongue cancer exhibited improved respiratory, swallowing, and speech functions, which were attributed not only to the shrinkage of the tumor but also to the improvement in airway narrowing. In conclusion, PDT using IR-783 liposomes effectively reduces tumor size in tongue and breast cancers.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.