CCR2限制海马CD8 TRM细胞产生IFN-γ,从而损害WNV脑炎恢复期间的学习和记忆。

IF 9.3 1区 医学 Q1 IMMUNOLOGY Journal of Neuroinflammation Pub Date : 2024-12-27 DOI:10.1186/s12974-024-03309-y
Shenjian Ai, Artem Arutyunov, Joshua Liu, Jeremy D Hill, Xiaoping Jiang, Robyn S Klein
{"title":"CCR2限制海马CD8 TRM细胞产生IFN-γ,从而损害WNV脑炎恢复期间的学习和记忆。","authors":"Shenjian Ai, Artem Arutyunov, Joshua Liu, Jeremy D Hill, Xiaoping Jiang, Robyn S Klein","doi":"10.1186/s12974-024-03309-y","DOIUrl":null,"url":null,"abstract":"<p><p>Central nervous system (CNS) resident memory CD8 T cells (T<sub>RM</sub>) that express IFN-γ contribute to neurodegenerative processes, including synapse loss, leading to memory impairment. Here, we show that CCR2 signaling in CD8 T<sub>RM</sub> that persist within the hippocampus after recovery from CNS infection with West Nile virus (WNV) significantly prevents the development of memory impairments. Using CCR2-deficient mice, we determined that CCR2 expression is not essential for CNS T cell recruitment or virologic control during acute WNV infection. However, transcriptomic analyses of forebrain CCR2<sup>+</sup> versus CCR2<sup>-</sup> CD8 T<sub>RM</sub> during WNV recovery reveal that CCR2 signaling significantly regulates hippocampal CD8 T<sub>RM</sub> phenotype and function via extrinsic and intrinsic effects, limiting expression of CD103, granzyme A and IFN-γ, respectively, and increasing the percentages of virus-specific CD8 T cells. Consistent with this, WNV-recovered Cd8a<sup>cre</sup>Ccr2<sup>fl/fl</sup> mice exhibit decreased recognition memory. Overall, these data implicate CCR2 signaling in the regulation of CD8 T<sub>RM</sub> phenotype, including antiviral specificity and IFN-γ expression, highlighing a neuroprotective role for CCR2 in limiting CD8 T cell-mediated neuroinflammation and cognitive deficits, providing insights into potential therapeutic targets for CNS infections.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"330"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673327/pdf/","citationCount":"0","resultStr":"{\"title\":\"CCR2 restricts IFN-γ production by hippocampal CD8 TRM cells that impair learning and memory during recovery from WNV encephalitis.\",\"authors\":\"Shenjian Ai, Artem Arutyunov, Joshua Liu, Jeremy D Hill, Xiaoping Jiang, Robyn S Klein\",\"doi\":\"10.1186/s12974-024-03309-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Central nervous system (CNS) resident memory CD8 T cells (T<sub>RM</sub>) that express IFN-γ contribute to neurodegenerative processes, including synapse loss, leading to memory impairment. Here, we show that CCR2 signaling in CD8 T<sub>RM</sub> that persist within the hippocampus after recovery from CNS infection with West Nile virus (WNV) significantly prevents the development of memory impairments. Using CCR2-deficient mice, we determined that CCR2 expression is not essential for CNS T cell recruitment or virologic control during acute WNV infection. However, transcriptomic analyses of forebrain CCR2<sup>+</sup> versus CCR2<sup>-</sup> CD8 T<sub>RM</sub> during WNV recovery reveal that CCR2 signaling significantly regulates hippocampal CD8 T<sub>RM</sub> phenotype and function via extrinsic and intrinsic effects, limiting expression of CD103, granzyme A and IFN-γ, respectively, and increasing the percentages of virus-specific CD8 T cells. Consistent with this, WNV-recovered Cd8a<sup>cre</sup>Ccr2<sup>fl/fl</sup> mice exhibit decreased recognition memory. Overall, these data implicate CCR2 signaling in the regulation of CD8 T<sub>RM</sub> phenotype, including antiviral specificity and IFN-γ expression, highlighing a neuroprotective role for CCR2 in limiting CD8 T cell-mediated neuroinflammation and cognitive deficits, providing insights into potential therapeutic targets for CNS infections.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"21 1\",\"pages\":\"330\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673327/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-024-03309-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03309-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中枢神经系统(CNS)常驻记忆CD8 T细胞(TRM)表达IFN-γ有助于神经退行性过程,包括突触丧失,导致记忆障碍。本研究表明,在中枢神经系统感染西尼罗病毒(WNV)后恢复后,海马体内持续存在的CD8 TRM中的CCR2信号显著阻止了记忆障碍的发展。使用CCR2缺陷小鼠,我们确定在急性西尼罗河病毒感染期间,CCR2表达对于CNS T细胞募集或病毒学控制不是必需的。然而,在WNV恢复期间,前脑CCR2+与CCR2- CD8 TRM的转录组学分析显示,CCR2信号通过外在和内在效应显著调节海马CD8 TRM的表型和功能,分别限制CD103、颗粒酶A和IFN-γ的表达,并增加病毒特异性CD8 T细胞的百分比。与此一致的是,wnv恢复的Cd8acreCcr2fl/fl小鼠表现出识别记忆下降。总的来说,这些数据暗示CCR2信号在CD8 TRM表型的调节中,包括抗病毒特异性和IFN-γ表达,强调了CCR2在限制CD8 T细胞介导的神经炎症和认知缺陷方面的神经保护作用,为CNS感染的潜在治疗靶点提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CCR2 restricts IFN-γ production by hippocampal CD8 TRM cells that impair learning and memory during recovery from WNV encephalitis.

Central nervous system (CNS) resident memory CD8 T cells (TRM) that express IFN-γ contribute to neurodegenerative processes, including synapse loss, leading to memory impairment. Here, we show that CCR2 signaling in CD8 TRM that persist within the hippocampus after recovery from CNS infection with West Nile virus (WNV) significantly prevents the development of memory impairments. Using CCR2-deficient mice, we determined that CCR2 expression is not essential for CNS T cell recruitment or virologic control during acute WNV infection. However, transcriptomic analyses of forebrain CCR2+ versus CCR2- CD8 TRM during WNV recovery reveal that CCR2 signaling significantly regulates hippocampal CD8 TRM phenotype and function via extrinsic and intrinsic effects, limiting expression of CD103, granzyme A and IFN-γ, respectively, and increasing the percentages of virus-specific CD8 T cells. Consistent with this, WNV-recovered Cd8acreCcr2fl/fl mice exhibit decreased recognition memory. Overall, these data implicate CCR2 signaling in the regulation of CD8 TRM phenotype, including antiviral specificity and IFN-γ expression, highlighing a neuroprotective role for CCR2 in limiting CD8 T cell-mediated neuroinflammation and cognitive deficits, providing insights into potential therapeutic targets for CNS infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
期刊最新文献
CCL21-CCR7 blockade prevents neuroinflammation and degeneration in Parkinson's disease models. Probiotics alleviate painful diabetic neuropathy by modulating the microbiota-gut-nerve axis in rats. Astrocytic heterogeneous nuclear ribonucleoprotein U is involved in scar formation after spinal cord injury. Exploratory analysis of a Novel RACK1 mutation and its potential role in epileptic seizures via Microglia activation. Microglial C/EBPβ-Fcgr1 regulatory axis blocking inhibits microglial pyroptosis and improves neurological recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1