人多能干细胞衍生的小胶质细胞在体外形成神经元形态并增强网络活性。

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2024-12-25 DOI:10.1016/j.jneumeth.2024.110354
L.M.L. Kok , K. Helwegen , N.F. Coveña , V.M. Heine
{"title":"人多能干细胞衍生的小胶质细胞在体外形成神经元形态并增强网络活性。","authors":"L.M.L. Kok ,&nbsp;K. Helwegen ,&nbsp;N.F. Coveña ,&nbsp;V.M. Heine","doi":"10.1016/j.jneumeth.2024.110354","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining neuronal health, but are often overlooked in traditional neuron-focused <em>in vitro</em> models.</div></div><div><h3>New method</h3><div>In this study, we developed a novel co-culture system of human pluripotent stem cell (hPSC)-derived microglia and neurons to investigate how hPSC-derived microglia influence neuronal morphology and network activity. Using high-content morphological analysis and multi-electrode arrays (MEA), we demonstrate that these microglia successfully incorporate into neuronal networks and modulate key aspects of neuronal function.</div></div><div><h3>Results</h3><div>hPSC-derived microglia significantly reduced cellular debris and altered neuronal morphology by decreasing axonal and dendritic segments and reducing synapse density. Interestingly, despite the decrease in synapse density, neuronal network activity increased.</div></div><div><h3>Conclusion</h3><div>Our findings underscore the importance of including hPSC-derived microglia in <em>in vitro</em> models to better simulate <em>in vivo</em> neuroglial interactions and provide a platform for investigating neuron-glia dynamics in health and disease.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"415 ","pages":"Article 110354"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human pluripotent stem cell-derived microglia shape neuronal morphology and enhance network activity in vitro\",\"authors\":\"L.M.L. Kok ,&nbsp;K. Helwegen ,&nbsp;N.F. Coveña ,&nbsp;V.M. Heine\",\"doi\":\"10.1016/j.jneumeth.2024.110354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining neuronal health, but are often overlooked in traditional neuron-focused <em>in vitro</em> models.</div></div><div><h3>New method</h3><div>In this study, we developed a novel co-culture system of human pluripotent stem cell (hPSC)-derived microglia and neurons to investigate how hPSC-derived microglia influence neuronal morphology and network activity. Using high-content morphological analysis and multi-electrode arrays (MEA), we demonstrate that these microglia successfully incorporate into neuronal networks and modulate key aspects of neuronal function.</div></div><div><h3>Results</h3><div>hPSC-derived microglia significantly reduced cellular debris and altered neuronal morphology by decreasing axonal and dendritic segments and reducing synapse density. Interestingly, despite the decrease in synapse density, neuronal network activity increased.</div></div><div><h3>Conclusion</h3><div>Our findings underscore the importance of including hPSC-derived microglia in <em>in vitro</em> models to better simulate <em>in vivo</em> neuroglial interactions and provide a platform for investigating neuron-glia dynamics in health and disease.</div></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"415 \",\"pages\":\"Article 110354\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002991\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024002991","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:小胶质细胞是中枢神经系统的常驻免疫细胞,在维持神经元健康中起着至关重要的作用,但在传统的体外神经元聚焦模型中往往被忽视。新方法:在本研究中,我们建立了一种新的人类多能干细胞(hPSC)衍生的小胶质细胞和神经元共培养系统,以研究hPSC衍生的小胶质细胞如何影响神经元形态和网络活动。利用高含量形态学分析和多电极阵列(MEA),我们证明这些小胶质细胞成功地融入神经元网络并调节神经元功能的关键方面。结果:hpsc衍生的小胶质细胞通过减少轴突和树突节段以及减少突触密度显著减少细胞碎片和改变神经元形态。有趣的是,尽管突触密度下降,神经网络活动却增加了。结论:我们的研究结果强调了将hpsc衍生的小胶质细胞纳入体外模型的重要性,以更好地模拟体内神经胶质相互作用,并为研究健康和疾病中的神经元-胶质动力学提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human pluripotent stem cell-derived microglia shape neuronal morphology and enhance network activity in vitro

Background

Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining neuronal health, but are often overlooked in traditional neuron-focused in vitro models.

New method

In this study, we developed a novel co-culture system of human pluripotent stem cell (hPSC)-derived microglia and neurons to investigate how hPSC-derived microglia influence neuronal morphology and network activity. Using high-content morphological analysis and multi-electrode arrays (MEA), we demonstrate that these microglia successfully incorporate into neuronal networks and modulate key aspects of neuronal function.

Results

hPSC-derived microglia significantly reduced cellular debris and altered neuronal morphology by decreasing axonal and dendritic segments and reducing synapse density. Interestingly, despite the decrease in synapse density, neuronal network activity increased.

Conclusion

Our findings underscore the importance of including hPSC-derived microglia in in vitro models to better simulate in vivo neuroglial interactions and provide a platform for investigating neuron-glia dynamics in health and disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Assessment of voluntary drug and alcohol intake in Drosophila melanogaster using a modified one-tube capillary feeding assay Optimization of permeabilized brain tissue preparation to improve the analysis of mitochondrial oxidative capacities in specific subregions of the rat brain Discrete variational autoencoders BERT model-based transcranial focused ultrasound for Alzheimer's disease detection EEG-based fatigue state evaluation by combining complex network and frequency-spatial features Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1