{"title":"巯基点击反应制备1,1′-联萘基手性聚亚胺大环键合手性固定相及其在高效液相色谱中的对映分离性能","authors":"Jia-Lei Wu, Li-Qin Yu, Hua-Can Zhang, Bang-Jin Wang, Sheng-Ming Xie, Jun-Hui Zhang, Li-Ming Yuan","doi":"10.1002/jssc.70064","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Chiral macrocycles have emerged as attractive media for chromatographic enantioseparation due to their excellent host-guest recognition properties. In this study, a new chiral stationary phase (CSP) based on 1,1'-binaphthyl chiral polyimine macrocycle (CPM) was reported. The CPM was synthesized by one-step aldehyde-amine condensation of (<i>S</i>)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with 1,2-phenylenediamine and bonded on thiolated silica via the thiol-ene click reaction to afford the CSP. The enantioseparation performance of the CSP was evaluated by separating different types of racemates including alcohols, esters, ketones, amides, organic acids, and ethers in both normal-phase (NP) and reversed-phase (RP) elution modes. As a result, enantioseparations of 10 and 15 racemates were achieved in the two elution modes, respectively. Meanwhile, the effects of chromatographic conditions on separation, such as mobile phase composition and injection mass, were studied in detail. Moreover, a comparison of the proposed CSP for the separation of the tested racemates with commercial Chiralcel OD-H and Chiralpak AD-H columns was also conducted, and results revealed that the proposed CSP can achieve some enantioseparations that cannot be achieved by the two commercial columns. This study indicates that the chiral macrocycle is a promising chiral selector for high-performance liquid chromatography.</p>\n </div>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"47 24","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of a 1,1'-Binaphthyl-based Chiral Polyimine Macrocycle Bonded Chiral Stationary Phase by Thiol-ene Click Reaction and Its Enantioseparation Performance in High-Performance Liquid Chromatography\",\"authors\":\"Jia-Lei Wu, Li-Qin Yu, Hua-Can Zhang, Bang-Jin Wang, Sheng-Ming Xie, Jun-Hui Zhang, Li-Ming Yuan\",\"doi\":\"10.1002/jssc.70064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Chiral macrocycles have emerged as attractive media for chromatographic enantioseparation due to their excellent host-guest recognition properties. In this study, a new chiral stationary phase (CSP) based on 1,1'-binaphthyl chiral polyimine macrocycle (CPM) was reported. The CPM was synthesized by one-step aldehyde-amine condensation of (<i>S</i>)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with 1,2-phenylenediamine and bonded on thiolated silica via the thiol-ene click reaction to afford the CSP. The enantioseparation performance of the CSP was evaluated by separating different types of racemates including alcohols, esters, ketones, amides, organic acids, and ethers in both normal-phase (NP) and reversed-phase (RP) elution modes. As a result, enantioseparations of 10 and 15 racemates were achieved in the two elution modes, respectively. Meanwhile, the effects of chromatographic conditions on separation, such as mobile phase composition and injection mass, were studied in detail. Moreover, a comparison of the proposed CSP for the separation of the tested racemates with commercial Chiralcel OD-H and Chiralpak AD-H columns was also conducted, and results revealed that the proposed CSP can achieve some enantioseparations that cannot be achieved by the two commercial columns. This study indicates that the chiral macrocycle is a promising chiral selector for high-performance liquid chromatography.</p>\\n </div>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":\"47 24\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70064\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70064","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Preparation of a 1,1'-Binaphthyl-based Chiral Polyimine Macrocycle Bonded Chiral Stationary Phase by Thiol-ene Click Reaction and Its Enantioseparation Performance in High-Performance Liquid Chromatography
Chiral macrocycles have emerged as attractive media for chromatographic enantioseparation due to their excellent host-guest recognition properties. In this study, a new chiral stationary phase (CSP) based on 1,1'-binaphthyl chiral polyimine macrocycle (CPM) was reported. The CPM was synthesized by one-step aldehyde-amine condensation of (S)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with 1,2-phenylenediamine and bonded on thiolated silica via the thiol-ene click reaction to afford the CSP. The enantioseparation performance of the CSP was evaluated by separating different types of racemates including alcohols, esters, ketones, amides, organic acids, and ethers in both normal-phase (NP) and reversed-phase (RP) elution modes. As a result, enantioseparations of 10 and 15 racemates were achieved in the two elution modes, respectively. Meanwhile, the effects of chromatographic conditions on separation, such as mobile phase composition and injection mass, were studied in detail. Moreover, a comparison of the proposed CSP for the separation of the tested racemates with commercial Chiralcel OD-H and Chiralpak AD-H columns was also conducted, and results revealed that the proposed CSP can achieve some enantioseparations that cannot be achieved by the two commercial columns. This study indicates that the chiral macrocycle is a promising chiral selector for high-performance liquid chromatography.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.