雄性大鼠上丘深层神经元在脉冲前抑制中的作用及空间分离的影响。

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neuroscience Pub Date : 2025-02-06 Epub Date: 2024-12-24 DOI:10.1016/j.neuroscience.2024.12.047
Yu Ding, Huan Jiang, Na Xu, Liang Li
{"title":"雄性大鼠上丘深层神经元在脉冲前抑制中的作用及空间分离的影响。","authors":"Yu Ding, Huan Jiang, Na Xu, Liang Li","doi":"10.1016/j.neuroscience.2024.12.047","DOIUrl":null,"url":null,"abstract":"<p><p>Prepulse inhibition (PPI) refers to the phenomenon in which a weak sensory stimulus before a strong one significantly reduces the startle reflex caused by the strong stimulus. Perceptual spatial separation, a phenomenon where auditory cues from the prepulse and background noise are distinguished in space, has been shown to enhance PPI. This study aims to investigate the neural modulation mechanisms of PPI by the spatial separation between the prepulse stimulus and background noise, particularly in the deep superior colliculus (deepSC). The experiment used 11 anesthetized male Sprague-Dawley rats, with electrodes implanted in the left deepSC nd the right inferior colliculus (IC). The prepulse stimulus was a segment of narrowband noise, with interaural time differences adjusted so that the prepulse stimulus and background noise were perceived as either ipsilaterally leading or contralaterally leading, resulting in perceptual spatial fusion or spatial separation. The results showed that under conditions of spatial separation, the stimulus-response coherence of the envelope and fine structure components of the prepulse stimulus in the deepSC was significantly enhanced, the response of the deepSC to the stimulus was significantly reduced in the presence of the prepulse stimulus, and the envelope component of the prepulse stimulus was positively correlated with the inhibitory effect. The above results suggest that perceptual spatial dissociation can significantly enhance the expression of deepSC, particularly the precision of the envelope component, thereby significantly affecting the electrophysiological response of PPI.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"112-123"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of deep layer superior colliculus neurons in prepulse inhibition and the impact of spatial separation in male rats.\",\"authors\":\"Yu Ding, Huan Jiang, Na Xu, Liang Li\",\"doi\":\"10.1016/j.neuroscience.2024.12.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prepulse inhibition (PPI) refers to the phenomenon in which a weak sensory stimulus before a strong one significantly reduces the startle reflex caused by the strong stimulus. Perceptual spatial separation, a phenomenon where auditory cues from the prepulse and background noise are distinguished in space, has been shown to enhance PPI. This study aims to investigate the neural modulation mechanisms of PPI by the spatial separation between the prepulse stimulus and background noise, particularly in the deep superior colliculus (deepSC). The experiment used 11 anesthetized male Sprague-Dawley rats, with electrodes implanted in the left deepSC nd the right inferior colliculus (IC). The prepulse stimulus was a segment of narrowband noise, with interaural time differences adjusted so that the prepulse stimulus and background noise were perceived as either ipsilaterally leading or contralaterally leading, resulting in perceptual spatial fusion or spatial separation. The results showed that under conditions of spatial separation, the stimulus-response coherence of the envelope and fine structure components of the prepulse stimulus in the deepSC was significantly enhanced, the response of the deepSC to the stimulus was significantly reduced in the presence of the prepulse stimulus, and the envelope component of the prepulse stimulus was positively correlated with the inhibitory effect. The above results suggest that perceptual spatial dissociation can significantly enhance the expression of deepSC, particularly the precision of the envelope component, thereby significantly affecting the electrophysiological response of PPI.</p>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\" \",\"pages\":\"112-123\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuroscience.2024.12.047\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.047","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脉冲前抑制(Prepulse inhibition, PPI)是指在强烈的感官刺激之前,微弱的感官刺激会显著降低由强烈刺激引起的惊吓反射。知觉空间分离,一种来自预脉冲和背景噪声的听觉线索在空间上被区分出来的现象,已被证明可以增强PPI。本研究旨在探讨脉冲前刺激与背景噪声的空间分离对PPI的神经调节机制,特别是在深部上丘(deepSC)。实验使用了11只麻醉的雄性Sprague-Dawley大鼠,将电极植入左侧深sc和右侧下丘(IC)。脉冲前刺激是一段窄带噪声,通过调整耳间时差,使脉冲前刺激和背景噪声被感知为同侧领先或对侧领先,从而导致感知空间融合或空间分离。结果表明,在空间分离条件下,预脉冲刺激的包膜成分和精细结构成分的刺激-反应相干性显著增强,预脉冲刺激存在时,深度sc对刺激的反应显著降低,且预脉冲刺激的包膜成分与抑制效果正相关。以上结果提示,知觉空间解离可显著增强deepSC的表达,尤其是包膜成分的表达精度,从而显著影响PPI的电生理反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of deep layer superior colliculus neurons in prepulse inhibition and the impact of spatial separation in male rats.

Prepulse inhibition (PPI) refers to the phenomenon in which a weak sensory stimulus before a strong one significantly reduces the startle reflex caused by the strong stimulus. Perceptual spatial separation, a phenomenon where auditory cues from the prepulse and background noise are distinguished in space, has been shown to enhance PPI. This study aims to investigate the neural modulation mechanisms of PPI by the spatial separation between the prepulse stimulus and background noise, particularly in the deep superior colliculus (deepSC). The experiment used 11 anesthetized male Sprague-Dawley rats, with electrodes implanted in the left deepSC nd the right inferior colliculus (IC). The prepulse stimulus was a segment of narrowband noise, with interaural time differences adjusted so that the prepulse stimulus and background noise were perceived as either ipsilaterally leading or contralaterally leading, resulting in perceptual spatial fusion or spatial separation. The results showed that under conditions of spatial separation, the stimulus-response coherence of the envelope and fine structure components of the prepulse stimulus in the deepSC was significantly enhanced, the response of the deepSC to the stimulus was significantly reduced in the presence of the prepulse stimulus, and the envelope component of the prepulse stimulus was positively correlated with the inhibitory effect. The above results suggest that perceptual spatial dissociation can significantly enhance the expression of deepSC, particularly the precision of the envelope component, thereby significantly affecting the electrophysiological response of PPI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
期刊最新文献
Effects of ascorbic acid on myelination in offspring of advanced maternal age. Repeated exposure to high-dose nicotine induces prefrontal gray matter atrophy in adolescent male rats. Bayesian brain theory: Computational neuroscience of belief. Effects and mechanisms of Apelin in treating central nervous system diseases. Neuroticism and cerebral small vessel disease: A genetic correlation and Mendelian randomization analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1