大鼠下丘脑室旁核注射血管紧张素1-7,可通过多种受体提高血压和心率。

IF 4.6 2区 医学 Q1 NEUROSCIENCES Neuropharmacology Pub Date : 2025-03-15 Epub Date: 2024-12-26 DOI:10.1016/j.neuropharm.2024.110279
K Mińczuk, E Schlicker, A Krzyżewska, B Malinowska
{"title":"大鼠下丘脑室旁核注射血管紧张素1-7,可通过多种受体提高血压和心率。","authors":"K Mińczuk, E Schlicker, A Krzyżewska, B Malinowska","doi":"10.1016/j.neuropharm.2024.110279","DOIUrl":null,"url":null,"abstract":"<p><p>Although angiotensin 1-7 (Ang 1-7) and its role as a part of the \"protective\" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A<sub>2</sub> (TP), α<sub>1</sub>-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats. Acute injection of Ang 1-7 into the PVN increased blood pressure (BP) by about 15 mmHg and heart rate (HR) by about 14 beats/min. After preinjection with bicuculline (GABA<sub>A</sub> receptor antagonist), CNQX + D-AP5 (AMPA/kainate and NMDA receptor antagonists) and SQ29548 (TP receptor antagonist) the BP and HR reactions to Ang 1-7 were attenuated or abolished. The vasopressin V<sub>1A</sub> and V<sub>1B</sub> receptor antagonists conivaptan and nelivaptan, and the NADPH oxidase inhibitor apocynin even reversed the pressor and tachycardic effects of Ang 1-7. Antagonists of P2X (PPADS) and α<sub>1</sub>-adrenergic receptors (prazosin), the free radical scavenger tempol and the superoxide dismutase inhibitor DETC did not modify the cardiovascular effects of Ang 1-7. The (Mas receptor-related) rise in BP and HR evoked by Ang 1-7 administered to the rat PVN is linked to glutamate, vasopressin, GABA<sub>A</sub> and thromboxane receptors, and to oxidative stress, but does not seem to involve α<sub>1</sub>-adrenergic or P2X receptors.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110279"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angiotensin 1-7 injected into the rat paraventricular nucleus of hypothalamus increases blood pressure and heart rate via various receptors.\",\"authors\":\"K Mińczuk, E Schlicker, A Krzyżewska, B Malinowska\",\"doi\":\"10.1016/j.neuropharm.2024.110279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although angiotensin 1-7 (Ang 1-7) and its role as a part of the \\\"protective\\\" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A<sub>2</sub> (TP), α<sub>1</sub>-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats. Acute injection of Ang 1-7 into the PVN increased blood pressure (BP) by about 15 mmHg and heart rate (HR) by about 14 beats/min. After preinjection with bicuculline (GABA<sub>A</sub> receptor antagonist), CNQX + D-AP5 (AMPA/kainate and NMDA receptor antagonists) and SQ29548 (TP receptor antagonist) the BP and HR reactions to Ang 1-7 were attenuated or abolished. The vasopressin V<sub>1A</sub> and V<sub>1B</sub> receptor antagonists conivaptan and nelivaptan, and the NADPH oxidase inhibitor apocynin even reversed the pressor and tachycardic effects of Ang 1-7. Antagonists of P2X (PPADS) and α<sub>1</sub>-adrenergic receptors (prazosin), the free radical scavenger tempol and the superoxide dismutase inhibitor DETC did not modify the cardiovascular effects of Ang 1-7. The (Mas receptor-related) rise in BP and HR evoked by Ang 1-7 administered to the rat PVN is linked to glutamate, vasopressin, GABA<sub>A</sub> and thromboxane receptors, and to oxidative stress, but does not seem to involve α<sub>1</sub>-adrenergic or P2X receptors.</p>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\" \",\"pages\":\"110279\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuropharm.2024.110279\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuropharm.2024.110279","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尽管血管紧张素1-7 (Ang 1-7)及其作为肾素-血管紧张素系统“保护”轴的一部分的作用在文献中得到了很好的描述,但其血管紧张素ii样加压和急性中枢给药后的心动过速作用的机制尚未完全了解。本研究的目的是检查哪些受体有助于上述心血管效应。将Ang 1-7和谷氨酸、GABA、血管加压素、血栓素A2 (TP)、α1-肾上腺素能和P2X嘌呤受体拮抗剂或氧化应激调节剂注射到聚氨酯麻醉的雄性Wistar大鼠下丘脑室旁核(PVN)。急性向PVN注射Ang 1-7使血压(BP)升高约15 mmHg,心率(HR)升高约14次/分。预注射双库兰(GABAA受体拮抗剂)、CNQX + D-AP5 (AMPA/kainate和NMDA受体拮抗剂)和SQ29548 (TP受体拮抗剂)后,Ang 1-7的BP和HR反应减弱或消失。抗利尿激素V1A和V1B受体拮抗剂康伐他坦和奈利伐他坦,以及NADPH氧化酶抑制剂罗布宁甚至逆转了Ang 1-7的升压和心动过速作用。P2X (PPADS)和α1-肾上腺素能受体(prazosin)的拮抗剂、自由基清除剂tempol和超氧化物歧化酶抑制剂DETC没有改变Ang 1-7的心血管作用。给药大鼠PVN的Ang 1-7引起的(Mas受体相关的)血压和心率升高与谷氨酸、加压素、GABAA和血栓素受体以及氧化应激有关,但似乎与α1-肾上腺素能或P2X受体无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Angiotensin 1-7 injected into the rat paraventricular nucleus of hypothalamus increases blood pressure and heart rate via various receptors.

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A2 (TP), α1-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats. Acute injection of Ang 1-7 into the PVN increased blood pressure (BP) by about 15 mmHg and heart rate (HR) by about 14 beats/min. After preinjection with bicuculline (GABAA receptor antagonist), CNQX + D-AP5 (AMPA/kainate and NMDA receptor antagonists) and SQ29548 (TP receptor antagonist) the BP and HR reactions to Ang 1-7 were attenuated or abolished. The vasopressin V1A and V1B receptor antagonists conivaptan and nelivaptan, and the NADPH oxidase inhibitor apocynin even reversed the pressor and tachycardic effects of Ang 1-7. Antagonists of P2X (PPADS) and α1-adrenergic receptors (prazosin), the free radical scavenger tempol and the superoxide dismutase inhibitor DETC did not modify the cardiovascular effects of Ang 1-7. The (Mas receptor-related) rise in BP and HR evoked by Ang 1-7 administered to the rat PVN is linked to glutamate, vasopressin, GABAA and thromboxane receptors, and to oxidative stress, but does not seem to involve α1-adrenergic or P2X receptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
期刊最新文献
Effects of genetic knockdown of the serotonin transporter on established L-DOPA-induced dyskinesia and gene expression in hemiparkinsonian rats. Heat shock proteins in chronic pain: From molecular chaperones to pain modulators. Acute kappa opioid receptor blocking disrupts the pro-cognitive effect of cannabidiol in neuropathic rats. Efficacy and safety of evenamide, a glutamate modulator, added to a second-generation antipsychotic in inadequately/poorly responding patients with chronic schizophrenia: Results from a randomized, double-blind, placebo-controlled, phase 3, international clinical trial. Toluene is a cerebral artery constrictor acting via BK channels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1