Melissa Petzer, Seth-Frerich Fobian, Mary Gulumian, Vanessa Steenkamp, Werner Cordier
{"title":"羧基和胺-聚乙二醇金纳米颗粒作为肺泡癌球体的细胞毒性平台。","authors":"Melissa Petzer, Seth-Frerich Fobian, Mary Gulumian, Vanessa Steenkamp, Werner Cordier","doi":"10.1002/prp2.70051","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanoparticles (AuNPs) present with unique physicochemical features and potential for functionalization as anticancer agents. Three-dimensional spheroid models can be used to afford greater tissue representation due to their heterogeneous phenotype and complex molecular architecture. This study developed an A549 alveolar carcinoma spheroid model for cytotoxicity assessment and mechanistic evaluation of functionalized AuNPs. A549 spheroids were generated using an agarose micro-mold and were characterized (morphology, acid phosphatase activity, protein content) over 21 culturing days. The 72-h cytotoxicity of carboxyl-polyethylene glycol- (PCOOH-) and amine-polyethylene glycol- (PNH<sub>2</sub>-) functionalized AuNPs against Day 7 spheroids was assessed by determining spheroid morphology, acid phosphatase activity, protein content, caspase-3/7 activity, and cell cycle kinetics. Spheroids remained stable over the experimental period. Although the A549 spheroids' volume increased while remaining viable over the culturing period, structural integrity decreased from Day 14 onwards. The PCOOH-AuNPs lacked cytotoxicity at a maximum concentration of 1.2 × 10<sup>12</sup> nanoparticles/mL with no prominent alteration to the cellular processes investigated, while the PNH<sub>2</sub>-AuNPs (at a maximum of 4.5 × 10<sup>12</sup> nanoparticles/mL) displayed dose- and time-dependent cytotoxicity with associated loss of spheroid compactness, debris formation, DNA fragmentation, and a 75% reduction in acid phosphatase activity. Differentiation between cytotoxic and non-cytotoxic AuNPs was achieved, with preliminary elucidation of cytotoxicity endpoints. The PNH<sub>2</sub>-AuNPs promote cytotoxicity by modulating cellular kinetics while destabilizing the spheroid ultrastructure. The model serves as a proficient platform for more in-depth elucidation of NP cytotoxicity at the preclinical investigation phase.</p>","PeriodicalId":19948,"journal":{"name":"Pharmacology Research & Perspectives","volume":"13 1","pages":"e70051"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671224/pdf/","citationCount":"0","resultStr":"{\"title\":\"A549 Alveolar Carcinoma Spheroids as a Cytotoxicity Platform for Carboxyl- and Amine-Polyethylene Glycol Gold Nanoparticles.\",\"authors\":\"Melissa Petzer, Seth-Frerich Fobian, Mary Gulumian, Vanessa Steenkamp, Werner Cordier\",\"doi\":\"10.1002/prp2.70051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gold nanoparticles (AuNPs) present with unique physicochemical features and potential for functionalization as anticancer agents. Three-dimensional spheroid models can be used to afford greater tissue representation due to their heterogeneous phenotype and complex molecular architecture. This study developed an A549 alveolar carcinoma spheroid model for cytotoxicity assessment and mechanistic evaluation of functionalized AuNPs. A549 spheroids were generated using an agarose micro-mold and were characterized (morphology, acid phosphatase activity, protein content) over 21 culturing days. The 72-h cytotoxicity of carboxyl-polyethylene glycol- (PCOOH-) and amine-polyethylene glycol- (PNH<sub>2</sub>-) functionalized AuNPs against Day 7 spheroids was assessed by determining spheroid morphology, acid phosphatase activity, protein content, caspase-3/7 activity, and cell cycle kinetics. Spheroids remained stable over the experimental period. Although the A549 spheroids' volume increased while remaining viable over the culturing period, structural integrity decreased from Day 14 onwards. The PCOOH-AuNPs lacked cytotoxicity at a maximum concentration of 1.2 × 10<sup>12</sup> nanoparticles/mL with no prominent alteration to the cellular processes investigated, while the PNH<sub>2</sub>-AuNPs (at a maximum of 4.5 × 10<sup>12</sup> nanoparticles/mL) displayed dose- and time-dependent cytotoxicity with associated loss of spheroid compactness, debris formation, DNA fragmentation, and a 75% reduction in acid phosphatase activity. Differentiation between cytotoxic and non-cytotoxic AuNPs was achieved, with preliminary elucidation of cytotoxicity endpoints. The PNH<sub>2</sub>-AuNPs promote cytotoxicity by modulating cellular kinetics while destabilizing the spheroid ultrastructure. The model serves as a proficient platform for more in-depth elucidation of NP cytotoxicity at the preclinical investigation phase.</p>\",\"PeriodicalId\":19948,\"journal\":{\"name\":\"Pharmacology Research & Perspectives\",\"volume\":\"13 1\",\"pages\":\"e70051\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671224/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacology Research & Perspectives\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/prp2.70051\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Research & Perspectives","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/prp2.70051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A549 Alveolar Carcinoma Spheroids as a Cytotoxicity Platform for Carboxyl- and Amine-Polyethylene Glycol Gold Nanoparticles.
Gold nanoparticles (AuNPs) present with unique physicochemical features and potential for functionalization as anticancer agents. Three-dimensional spheroid models can be used to afford greater tissue representation due to their heterogeneous phenotype and complex molecular architecture. This study developed an A549 alveolar carcinoma spheroid model for cytotoxicity assessment and mechanistic evaluation of functionalized AuNPs. A549 spheroids were generated using an agarose micro-mold and were characterized (morphology, acid phosphatase activity, protein content) over 21 culturing days. The 72-h cytotoxicity of carboxyl-polyethylene glycol- (PCOOH-) and amine-polyethylene glycol- (PNH2-) functionalized AuNPs against Day 7 spheroids was assessed by determining spheroid morphology, acid phosphatase activity, protein content, caspase-3/7 activity, and cell cycle kinetics. Spheroids remained stable over the experimental period. Although the A549 spheroids' volume increased while remaining viable over the culturing period, structural integrity decreased from Day 14 onwards. The PCOOH-AuNPs lacked cytotoxicity at a maximum concentration of 1.2 × 1012 nanoparticles/mL with no prominent alteration to the cellular processes investigated, while the PNH2-AuNPs (at a maximum of 4.5 × 1012 nanoparticles/mL) displayed dose- and time-dependent cytotoxicity with associated loss of spheroid compactness, debris formation, DNA fragmentation, and a 75% reduction in acid phosphatase activity. Differentiation between cytotoxic and non-cytotoxic AuNPs was achieved, with preliminary elucidation of cytotoxicity endpoints. The PNH2-AuNPs promote cytotoxicity by modulating cellular kinetics while destabilizing the spheroid ultrastructure. The model serves as a proficient platform for more in-depth elucidation of NP cytotoxicity at the preclinical investigation phase.
期刊介绍:
PR&P is jointly published by the American Society for Pharmacology and Experimental Therapeutics (ASPET), the British Pharmacological Society (BPS), and Wiley. PR&P is a bi-monthly open access journal that publishes a range of article types, including: target validation (preclinical papers that show a hypothesis is incorrect or papers on drugs that have failed in early clinical development); drug discovery reviews (strategy, hypotheses, and data resulting in a successful therapeutic drug); frontiers in translational medicine (drug and target validation for an unmet therapeutic need); pharmacological hypotheses (reviews that are oriented to inform a novel hypothesis); and replication studies (work that refutes key findings [failed replication] and work that validates key findings). PR&P publishes papers submitted directly to the journal and those referred from the journals of ASPET and the BPS