全氟烷基物质(PFAS)暴露与子痫前期风险:通过抑制VEGF信号抑制血管生成

IF 3.3 4区 医学 Q2 REPRODUCTIVE BIOLOGY Reproductive toxicology Pub Date : 2024-12-26 DOI:10.1016/j.reprotox.2024.108827
Jay S. Mishra , Bradley Bosse , Kara K. Hoppe , Kristen Malecki , Scott J. Hetzel , Sathish Kumar
{"title":"全氟烷基物质(PFAS)暴露与子痫前期风险:通过抑制VEGF信号抑制血管生成","authors":"Jay S. Mishra ,&nbsp;Bradley Bosse ,&nbsp;Kara K. Hoppe ,&nbsp;Kristen Malecki ,&nbsp;Scott J. Hetzel ,&nbsp;Sathish Kumar","doi":"10.1016/j.reprotox.2024.108827","DOIUrl":null,"url":null,"abstract":"<div><div>Per- and polyfluoroalkyl substances (PFAS) are linked to preeclampsia (PE), a condition involving abnormal angiogenesis. Prior research on this association has been inconclusive. We investigated the relationship between maternal PFAS exposure and PE risk in Wisconsin. We also examined if PFAS disrupts angiogenesis and, if so, what mechanisms are involved. We conducted a case-control study with 40 PE cases and 40 controls. Maternal serum was analyzed for 38 different PFAS compounds using LC MS/MS. Functional in vitro experiments assessed PFOS effects on angiogenesis and mechanisms. Maternal serum samples from women with PE exhibited significantly higher PFOS and PFHPS concentrations than controls. After adjusting for confounders, each log-scale IQR increase in PFOS and PFHPS concentrations was associated with a 7.18-fold (95 % CI: 2.24, 23.0) and 5.40-fold (95 % CI: 1.81, 16.1) higher odds of PE, respectively. Furthermore, PFOS and PFHPS were positively associated with sFLT1 levels and the sFLT1/PLGF ratio. In vitro experiments revealed that PFOS exposure impaired HUVEC proliferation, migration, and tube formation, essential processes for angiogenesis. The membrane-based antibody array showed that PFOS decreased expression of multiple angiogenic proteins, including I-TAC, uPAR, VEGFR2, MMP-1, IL-1α, Angiopoietin-2, IL-1β, PECAM-1, TIE-2, and TIMP-2. The qPCR analysis demonstrated that PFOS decreased VEGFR2, the upstream target of VEGF, at the transcriptional level. In conclusion, elevated PFAS, especially PFOS and PFHPS, are linked to increased PE risk. PFOS may suppress angiogenesis via attenuated VEGFR2-mediated signaling, providing a molecular mechanism linking PFAS and PE pathogenesis.</div></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":"132 ","pages":"Article 108827"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perfluoroalkyl substances (PFAS) exposure and preeclampsia risk: Impaired angiogenesis through suppression of VEGF signaling\",\"authors\":\"Jay S. Mishra ,&nbsp;Bradley Bosse ,&nbsp;Kara K. Hoppe ,&nbsp;Kristen Malecki ,&nbsp;Scott J. Hetzel ,&nbsp;Sathish Kumar\",\"doi\":\"10.1016/j.reprotox.2024.108827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Per- and polyfluoroalkyl substances (PFAS) are linked to preeclampsia (PE), a condition involving abnormal angiogenesis. Prior research on this association has been inconclusive. We investigated the relationship between maternal PFAS exposure and PE risk in Wisconsin. We also examined if PFAS disrupts angiogenesis and, if so, what mechanisms are involved. We conducted a case-control study with 40 PE cases and 40 controls. Maternal serum was analyzed for 38 different PFAS compounds using LC MS/MS. Functional in vitro experiments assessed PFOS effects on angiogenesis and mechanisms. Maternal serum samples from women with PE exhibited significantly higher PFOS and PFHPS concentrations than controls. After adjusting for confounders, each log-scale IQR increase in PFOS and PFHPS concentrations was associated with a 7.18-fold (95 % CI: 2.24, 23.0) and 5.40-fold (95 % CI: 1.81, 16.1) higher odds of PE, respectively. Furthermore, PFOS and PFHPS were positively associated with sFLT1 levels and the sFLT1/PLGF ratio. In vitro experiments revealed that PFOS exposure impaired HUVEC proliferation, migration, and tube formation, essential processes for angiogenesis. The membrane-based antibody array showed that PFOS decreased expression of multiple angiogenic proteins, including I-TAC, uPAR, VEGFR2, MMP-1, IL-1α, Angiopoietin-2, IL-1β, PECAM-1, TIE-2, and TIMP-2. The qPCR analysis demonstrated that PFOS decreased VEGFR2, the upstream target of VEGF, at the transcriptional level. In conclusion, elevated PFAS, especially PFOS and PFHPS, are linked to increased PE risk. PFOS may suppress angiogenesis via attenuated VEGFR2-mediated signaling, providing a molecular mechanism linking PFAS and PE pathogenesis.</div></div>\",\"PeriodicalId\":21137,\"journal\":{\"name\":\"Reproductive toxicology\",\"volume\":\"132 \",\"pages\":\"Article 108827\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890623824002946\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890623824002946","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全氟烷基和多氟烷基物质(PFAS)与子痫前期(PE)有关,这是一种涉及血管生成异常的疾病。先前对这一关联的研究尚无定论。我们调查了威斯康星州母亲PFAS暴露与PE风险之间的关系。我们还研究了PFAS是否会破坏血管生成,如果是,涉及什么机制。我们对40例PE病例和40例对照进行了病例-对照研究。采用LC - MS/MS对母体血清中38种不同的PFAS化合物进行分析。体外功能实验评估全氟辛烷磺酸对血管生成的影响及其机制。PE妇女的母体血清样本显示PFOS和PFHPS浓度明显高于对照组。在调整混杂因素后,PFOS和PFHPS浓度每增加一个对数尺度IQR分别与7.18倍(95% CI: 2.24, 23.0)和5.40倍(95% CI: 1.81, 16.1)高PE几率相关。此外,PFOS和PFHPS与sFLT1水平和sFLT1/PLGF比值呈正相关。体外实验显示,全氟辛烷磺酸暴露会损害HUVEC的增殖、迁移和管形成,这是血管生成的基本过程。膜基抗体阵列显示,PFOS降低了多种血管生成蛋白的表达,包括I-TAC、uPAR、VEGFR2、MMP-1、IL-1α、Angiopoietin-2、IL-1β、PECAM-1、TIE-2和TIMP-2。qPCR分析表明,PFOS在转录水平上降低了VEGF的上游靶点VEGFR2。总之,PFAS升高,尤其是PFOS和PFHPS,与PE风险增加有关。PFOS可能通过vegfr2介导的信号减弱抑制血管生成,提供了PFAS与PE发病机制之间的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Perfluoroalkyl substances (PFAS) exposure and preeclampsia risk: Impaired angiogenesis through suppression of VEGF signaling
Per- and polyfluoroalkyl substances (PFAS) are linked to preeclampsia (PE), a condition involving abnormal angiogenesis. Prior research on this association has been inconclusive. We investigated the relationship between maternal PFAS exposure and PE risk in Wisconsin. We also examined if PFAS disrupts angiogenesis and, if so, what mechanisms are involved. We conducted a case-control study with 40 PE cases and 40 controls. Maternal serum was analyzed for 38 different PFAS compounds using LC MS/MS. Functional in vitro experiments assessed PFOS effects on angiogenesis and mechanisms. Maternal serum samples from women with PE exhibited significantly higher PFOS and PFHPS concentrations than controls. After adjusting for confounders, each log-scale IQR increase in PFOS and PFHPS concentrations was associated with a 7.18-fold (95 % CI: 2.24, 23.0) and 5.40-fold (95 % CI: 1.81, 16.1) higher odds of PE, respectively. Furthermore, PFOS and PFHPS were positively associated with sFLT1 levels and the sFLT1/PLGF ratio. In vitro experiments revealed that PFOS exposure impaired HUVEC proliferation, migration, and tube formation, essential processes for angiogenesis. The membrane-based antibody array showed that PFOS decreased expression of multiple angiogenic proteins, including I-TAC, uPAR, VEGFR2, MMP-1, IL-1α, Angiopoietin-2, IL-1β, PECAM-1, TIE-2, and TIMP-2. The qPCR analysis demonstrated that PFOS decreased VEGFR2, the upstream target of VEGF, at the transcriptional level. In conclusion, elevated PFAS, especially PFOS and PFHPS, are linked to increased PE risk. PFOS may suppress angiogenesis via attenuated VEGFR2-mediated signaling, providing a molecular mechanism linking PFAS and PE pathogenesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproductive toxicology
Reproductive toxicology 生物-毒理学
CiteScore
6.50
自引率
3.00%
发文量
131
审稿时长
45 days
期刊介绍: Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine. All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.
期刊最新文献
1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal exposure induces testicular toxicity in male mice Developmental and reproductive toxicity (DART) study of a novel SARS-CoV-2 tetravalent recombinant protein vaccine (SCTV01E) in rats. Low-level exposure to environmental lithium element affects male reproductive outcomes: Results from the MARHCS cohort study in Chongqing, China and in vivo animal experiments. Subcutaneous zilucoplan: evaluation of reproductive toxicology. Propylparaben negatively impacts IN VITRO preimplantation mouse embryo development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1